login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: s(2)^2*s(3)^3/(s(1)*s(6)^2), where s(k) = eta(q^k) and eta(q) is Dedekind's function, cf. A010815.
4

%I #27 Jan 22 2024 01:25:04

%S 1,1,0,-2,-3,0,0,2,0,-2,0,0,6,2,0,0,-3,0,0,2,0,-4,0,0,0,1,0,-2,-6,0,0,

%T 2,0,0,0,0,6,2,0,-4,0,0,0,2,0,0,0,0,6,3,0,0,-6,0,0,0,0,-4,0,0,0,2,0,

%U -4,-3,0,0,2,0,0,0,0,0,2,0,-2,-6,0,0,2,0,-2,0,0,12,0,0,0,0,0,0,4,0,-4,0,0,0,2,0,0,-3,0,0,2,0

%N G.f.: s(2)^2*s(3)^3/(s(1)*s(6)^2), where s(k) = eta(q^k) and eta(q) is Dedekind's function, cf. A010815.

%C Coefficients are multiplicative [Fine].

%D Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 80, Eq. (32.36).

%H G. C. Greubel, <a href="/A097109/b097109.txt">Table of n, a(n) for n = 0..1000</a>

%F Fine gives an explicit formula for a(n) in terms of the divisors of n.

%F From _Michael Somos_, Sep 15 2006: (Start)

%F Expansion of (a(q) - 3*a(q^3) - 4*a(q^4) + 12*a(q^12)) / 6 in powers of q where a() is a cubic AGM theta function.

%F Euler transform of period 6 sequence [ 1, -1, -2, -1, 1, -2, ...].

%F a(n) is multiplicative with a(2^e) = -3(1+(-1)^e)/2 if e>0, a(3^e) = -2 if e>0, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1+(-1)^e)/2 if p == 5 (mod 6). (End)

%F a(3*n + 2) = 0. a(3*n) = A115978(n). a(3*n + 1) = A122861(n).

%F Sum_{k=0..n} abs(a(k)) ~ c * n, where c = 2*Pi/(3*sqrt(3)) = 1.209199... (A248897). - _Amiram Eldar_, Jan 22 2024

%t QP = QPochhammer; s = QP[q^2]^2*(QP[q^3]^3/(QP[q]*QP[q^6]^2)) + O[q]^100; CoefficientList[s, q] (* _Jean-François Alcover_, Nov 25 2015, adapted from PARI *)

%o (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A)^3 / (eta(x + A) * eta(x^6 + A)^2), n))} /* _Michael Somos_, Sep 15 2006 */

%o (PARI) {a(n) = local(A, p, e); if( n<1, n==0, A = factor(n); prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if(p==2, 3*(e%2-1), if( p==3, -2, if( p%6==1, e+1, 1-e%2))))))} /* _Michael Somos_, Sep 15 2006 */

%Y Cf. A010815, A115978, A122861, A248897.

%K sign,mult

%O 0,4

%A _N. J. A. Sloane_, Sep 16 2004