login
A097107
Triangle read by rows: T(n,k) = number of peakless Motzkin paths of length n and containing a total of k level steps H in all DHH...HU's, where U=(1,1), H=(1,0) and D=(1,-1) (can be easily expressed using RNA secondary structure terminology).
0
1, 1, 1, 2, 4, 8, 17, 36, 1, 77, 4, 1, 167, 13, 4, 1, 365, 40, 13, 4, 1, 805, 114, 41, 13, 4, 1, 1790, 314, 119, 42, 13, 4, 1, 4008, 845, 335, 124, 43, 13, 4, 1, 9033, 2230, 925, 356, 129, 44, 13, 4, 1, 20477, 5809, 2506, 1006, 377, 134, 45, 13, 4, 1, 46663, 14980, 6712
OFFSET
0,4
COMMENTS
Row sums yield the RNA secondary structure numbers (A004148).
LINKS
I. L. Hofacker, P. Schuster and P. F. Stadler, Combinatorics of RNA secondary structures, Discrete Appl. Math., 88, 1998, 207-237.
P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26 (1979), 261-272.
M. Vauchassade de Chaumont and G. Viennot, Polynômes orthogonaux et problèmes d'énumération en biologie moléculaire, Sem. Loth. Comb. B08l (1984) 79-86. [Formerly: Publ. I.R.M.A. Strasbourg, 1984, 229/S-08, p. 79-86.]
FORMULA
G.f.: G=G(t, z) satisfies G=1+zG+z^2*(G-1)[(1-z)G+z(1-t)/(1-z)]/(1-tz).
EXAMPLE
Triangle starts:
1;
1;
1;
2;
4;
8;
17;
36,1;
77,4,1;
167,13,4,1;
Row n>=6 contains n-5 terms.
T(10,3)=4 because we have UHD(HHH)UHDH, UHD(HHH)UHHD, HUHD(HHH)UHD and UHHD(HHH)UHD, where U=(1,1), H=(1,0) and D=(1,-1); the 3 required H's are shown between parentheses.
CROSSREFS
Cf. A004148.
Sequence in context: A127680 A136750 A274115 * A098083 A182900 A202843
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Sep 16 2004
STATUS
approved