OFFSET
1,2
COMMENTS
From Gonzalo Rodríguez Whipple, May 30 2010: (Start)
The sequence consists of two series, one of which consists of two subseries.
1. If n is a multiple of 3: n^2/6+n/2.
2.1 If n=1 or n+1 is a multiple of 6 or n-1 is a multiple of 6: n^2/4+n/2+1/4.
2.2 Otherwise: n^2/4+n/2.
This means that frequencies (n) that are multiples of 3 assure a higher symmetry and need a smaller number of different strut lengths. (End)
LINKS
Tara Landry, Desert Domes.
Index entries for linear recurrences with constant coefficients, signature (0,0,2,0,0,0,0,0,-2,0,0,1).
FORMULA
Satisfies a linear recurrence with characteristic polynomial (1+x^3)(1-x^3)^3.
From Gonzalo Rodríguez Whipple, May 30 2010: (Start)
a(n) = if(n mod 3, (n^2)/6+n/2, 0)
+ if(((n+1) mod 6) or ((n-1) mod 6), (n^2)/4+n/2+1/4), 0)
+ if(((n+2) mod 6) or ((n-2) mod 6), (n^2)/4+n/2), 0). (End)
G.f.: -x*(2*x^7+4*x^6+3*x^5+5*x^4+4*x^3+3*x^2+2*x+1)/((x-1)^3*(x+1)*(x^2-x+1)*(x^2+x+1)^3). [Colin Barker, Oct 21 2012]
a(n) = ((2*n^2+6*n)*(1-(n^2 mod 3))+3*(n+1)^2*(n^2 mod (5-(-1)^n)/2)+(3*n^2 +6*n)*((n+3)^2 mod (5+(-1)^n)/2))/12. - Wesley Ivan Hurt, Mar 11 2015
A045943(n) = a(3*(n-1)), n<>1. - Gonzalo Rodríguez Whipple, May 30 2010
EXAMPLE
a(4) = 6 since we can build a "4V" dome of radius 1 using 30 struts of length 0.25318, 30 struts of length 0.29453, 70 of length 0.31287, 30 of length 0.32492 and 30 of length 0.29859. The number 6 indicates the number of different jig settings we'd have to use to manufacture all the struts for this dome.
a(299)=22500, a(300)=15150, a(301)=22801. [Gonzalo Rodríguez Whipple, May 30 2010]
MATHEMATICA
Table[If[Divisible[n, 3], (n^2)/6 + n/2, 0] + If[Divisible[n + 1, 6] || Divisible[n - 1, 6], (n^2)/4 + n/2 + 1/4, 0] + If[Divisible[n + 2, 6] || Divisible[n - 2, 6], (n^2)/4 + n/2, 0], {n, 100}] (* Gonzalo Rodríguez Whipple, May 30 2010 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Tom Davis (tomrdavis(AT)earthlink.net), Sep 15 2004
STATUS
approved