login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166539
a(n) = (10*n + 7*(-1)^n + 5)/4.
1
2, 8, 7, 13, 12, 18, 17, 23, 22, 28, 27, 33, 32, 38, 37, 43, 42, 48, 47, 53, 52, 58, 57, 63, 62, 68, 67, 73, 72, 78, 77, 83, 82, 88, 87, 93, 92, 98, 97, 103, 102, 108, 107, 113, 112, 118, 117, 123, 122, 128, 127, 133, 132, 138, 137, 143, 142, 148, 147, 153, 152, 158
OFFSET
1,1
FORMULA
a(n) = 5*n - a(n-1), n>=2.
From Harvey P. Dale, Jun 29 2011: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3), n>=4.
G.f.: x*(2+3*x*(2-x))/((1-x)^2*(1+x)). (End)
From G. C. Greubel, May 16 2016: (Start)
E.g.f.: (1/4)*(5*(1 + 2*x)*exp(x) + 7*exp(-x) - 12).
a(n) = a(n-1) + a(n-2) - a(n-3). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/3 + sqrt((5-2*sqrt(5))/5)*Pi/5. - Amiram Eldar, Feb 24 2023
a(n) = A166520(n) - (-1)^n. - G. C. Greubel, Aug 04 2024
MATHEMATICA
RecurrenceTable[{a[1]==2, a[n]==5n-a[n-1]}, a[n], {n, 70}] (* or *) LinearRecurrence[{1, 1, -1}, {2, 8, 7}, 70] (* Harvey P. Dale, Jun 29 2011 *)
PROG
(Magma) [5*n/2 + (5+7*(-1)^n)/4: n in [1..70]]; // Vincenzo Librandi, May 15 2013
(SageMath)
def A166539(n): return (5*n - 1 + 7*((n+1)%2))//2
[A166539(n) for n in range(1, 101)] # G. C. Greubel, Aug 04 2024
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Oct 16 2009
STATUS
approved