The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A166539 a(n) = (10*n + 7*(-1)^n + 5)/4. 1
 2, 8, 7, 13, 12, 18, 17, 23, 22, 28, 27, 33, 32, 38, 37, 43, 42, 48, 47, 53, 52, 58, 57, 63, 62, 68, 67, 73, 72, 78, 77, 83, 82, 88, 87, 93, 92, 98, 97, 103, 102, 108, 107, 113, 112, 118, 117, 123, 122, 128, 127, 133, 132, 138, 137, 143, 142, 148, 147, 153, 152, 158 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (1,1,-1). FORMULA a(n) = 5*n - a(n-1), n>=2. From Harvey P. Dale, Jun 29 2011: (Start) a(n) = a(n-1) + a(n-2) - a(n-3), n>=4. G.f.: x*(2-3*x*(x-2))/((x-1)^2*(x+1)). (End) From G. C. Greubel, May 16 2016: (Start) E.g.f.: (1/4)*(5*(1 + 2*x)*exp(x) + 7*exp(-x) - 12). a(n) = a(n-1) + a(n-2) - a(n-3). (End) Sum_{n>=1} (-1)^(n+1)/a(n) = 1/3 + sqrt((5-2*sqrt(5))/5)*Pi/5. - Amiram Eldar, Feb 24 2023 EXAMPLE For n=2, a(2)=5*2-2=8; n=3, a(3)=5*3-8=7; n=4, a(4)=5*4-7=13. MATHEMATICA RecurrenceTable[{a[1]==2, a[n]==5n-a[n-1]}, a[n], {n, 70}] (* or *) LinearRecurrence[{1, 1, -1}, {2, 8, 7}, 70] (* Harvey P. Dale, Jun 29 2011 *) PROG (Magma) [5*n/2 + (5+7*(-1)^n)/4: n in [1..70]]; // Vincenzo Librandi, May 15 2013 CROSSREFS Sequence in context: A079031 A203145 A303498 * A344718 A075429 A344692 Adjacent sequences: A166536 A166537 A166538 * A166540 A166541 A166542 KEYWORD nonn,easy AUTHOR Vincenzo Librandi, Oct 16 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 18 11:09 EDT 2024. Contains 373481 sequences. (Running on oeis4.)