Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #35 Aug 04 2024 20:19:38
%S 2,8,7,13,12,18,17,23,22,28,27,33,32,38,37,43,42,48,47,53,52,58,57,63,
%T 62,68,67,73,72,78,77,83,82,88,87,93,92,98,97,103,102,108,107,113,112,
%U 118,117,123,122,128,127,133,132,138,137,143,142,148,147,153,152,158
%N a(n) = (10*n + 7*(-1)^n + 5)/4.
%H Vincenzo Librandi, <a href="/A166539/b166539.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1).
%F a(n) = 5*n - a(n-1), n>=2.
%F From _Harvey P. Dale_, Jun 29 2011: (Start)
%F a(n) = a(n-1) + a(n-2) - a(n-3), n>=4.
%F G.f.: x*(2+3*x*(2-x))/((1-x)^2*(1+x)). (End)
%F From _G. C. Greubel_, May 16 2016: (Start)
%F E.g.f.: (1/4)*(5*(1 + 2*x)*exp(x) + 7*exp(-x) - 12).
%F a(n) = a(n-1) + a(n-2) - a(n-3). (End)
%F Sum_{n>=1} (-1)^(n+1)/a(n) = 1/3 + sqrt((5-2*sqrt(5))/5)*Pi/5. - _Amiram Eldar_, Feb 24 2023
%F a(n) = A166520(n) - (-1)^n. - _G. C. Greubel_, Aug 04 2024
%t RecurrenceTable[{a[1]==2,a[n]==5n-a[n-1]},a[n],{n,70}] (* or *) LinearRecurrence[{1,1,-1},{2,8,7},70] (* _Harvey P. Dale_, Jun 29 2011 *)
%o (Magma) [5*n/2 + (5+7*(-1)^n)/4: n in [1..70]]; // _Vincenzo Librandi_, May 15 2013
%o (SageMath)
%o def A166539(n): return (5*n - 1 + 7*((n+1)%2))//2
%o [A166539(n) for n in range(1, 101)] # _G. C. Greubel_, Aug 04 2024
%Y Cf. A166519, A166520, A166521, A166522, A166523, A166524, A166525, A166526.
%K nonn,easy
%O 1,1
%A _Vincenzo Librandi_, Oct 16 2009