login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166522
a(n) = 7*n - a(n-1), with a(1) = 1.
8
1, 13, 8, 20, 15, 27, 22, 34, 29, 41, 36, 48, 43, 55, 50, 62, 57, 69, 64, 76, 71, 83, 78, 90, 85, 97, 92, 104, 99, 111, 106, 118, 113, 125, 120, 132, 127, 139, 134, 146, 141, 153, 148, 160, 155, 167, 162, 174, 169, 181, 176, 188, 183, 195, 190, 202, 197, 209, 204
OFFSET
1,2
FORMULA
G.f.: x*(1+12*x-6*x^2) / ( (1+x)*(1-x)^2 ). - R. J. Mathar, Mar 08 2011
a(n) = a(n-1) + a(n-2) - a(n-3), a(1)=1, a(2)=13, a(3)=8. - Harvey P. Dale, Jun 07 2012
E.g.f.: (1/4)*(17*exp(-x) + 7*(1 + 2*x)*exp(x) - 24). - G. C. Greubel, May 16 2016
a(n) = (1/4)*(14*n + 7 + 17*(-1)^n). - G. C. Greubel, Aug 03 2024
MATHEMATICA
RecurrenceTable[{a[1]==1, a[n]==7n-a[n-1]}, a, {n, 60}] (* or *) LinearRecurrence[{1, 1, -1}, {1, 13, 8}, 60] (* Harvey P. Dale, Jun 07 2012 *)
PROG
(Magma)
A166522:= func< n | ( 7*n -5 +17*((n+1) mod 2) )/2 >;
[A166522(n): n in [1..100]]; // G. C. Greubel, Aug 03 2024
(SageMath)
def A166522(n): return ( 7*n -5 +17*((n+1)%2) )//2
[A166522(n) for n in range(1, 101)] # G. C. Greubel, Aug 03 2024
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Oct 16 2009
STATUS
approved