login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303498
Decimal expansion of Sum_{p prime} log(p)/p^8.
7
0, 0, 2, 8, 7, 9, 5, 2, 4, 7, 0, 8, 7, 2, 9, 2, 4, 7, 3, 9, 1, 3, 4, 6, 0, 2, 8, 4, 2, 3, 8, 5, 7, 3, 3, 4, 0, 6, 4, 9, 9, 8, 9, 8, 3, 7, 6, 1, 6, 7, 5, 8, 6, 5, 8, 4, 1, 0, 6, 7, 6, 1, 8, 2, 8, 6, 1, 8, 5, 3, 2, 1, 4, 8, 1, 5, 4, 1, 8, 3, 9, 9, 5, 0, 4, 8, 1, 2, 7, 5, 6, 6, 2, 9, 6, 5, 0, 6, 8, 2, 7, 7, 4, 7, 9
OFFSET
0,3
COMMENTS
The negated first derivative of the Prime Zeta function at 8.
LINKS
EXAMPLE
0.00287952470872924739134602842385733406499898376167586584106761828618532...
MATHEMATICA
RealDigits[PrimeZetaP'[8], 10, 103][[1]]
PROG
(PARI) suminf(n=1, p=prime(n); log(p)/p^8) \\ Michel Marcus, Apr 25 2018
CROSSREFS
Decimal expansion of Sum_{p prime} log(p)/p^k: A136271 (k=2), A303493 (k=3), A303494 (k=4), A303495 (k=5), A303496 (k=6), A303497 (k=7), A303498 (k=8), A303499 (k=9).
Sequence in context: A319463 A079031 A203145 * A166539 A344718 A075429
KEYWORD
nonn,cons
AUTHOR
STATUS
approved