login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303500
The smallest positive even integer that can be written with n digits in base 3/2.
9
2, 21, 210, 2101, 21011, 210110, 2101100, 21011000, 210110001, 2101100011, 21011000110, 210110001101, 2101100011010, 21011000110100, 210110001101001, 2101100011010011, 21011000110100110, 210110001101001101
OFFSET
0,1
COMMENTS
a(n) is a prefix of a(n+1).
The smallest, not necessarily even, integer in base 3/2 with n digits is a(n-1) with 0 added at the end.
LINKS
B. Chen, R. Chen, J. Guo, S. Lee et al., On Base 3/2 and its Sequences, arXiv:1808.04304 [math.NT], 2018.
FORMULA
a(n) = A024629(A305498(n)). - R. J. Mathar, Jun 25 2018
EXAMPLE
The number 5 in base 3/2 is 22, and the number 6 is 210. Therefore, 210 is the smallest even integer with 3 digits in base 3/2.
MAPLE
roll32 := proc(L)
local piv, L1 ;
piv := 1;
L1 := subsop(piv=op(piv, L)+1, L) ;
while op(piv, L1) >= 3 do
L1 := [seq(0, i=1..piv), op(piv+1, L1)+1, seq(op(i, L1), i=piv+2..nops(L1))] ;
piv := piv+1 ;
end do:
L1 ;
end proc:
from32 := proc(L)
add( op(i, L)*(3/2)^(i-1), i=1..nops(L)) ;
end proc:
A303500 := proc(n)
local dgs ;
dgs := [seq(0, i=1..n-1), 1] ;
while not type(from32(dgs), 'even') do
dgs := roll32(dgs) ;
end do:
dgs := ListTools[Reverse](dgs) ;
digcatL(%) ;
end proc: # R. J. Mathar, Jun 25 2018
CROSSREFS
See A024629 for the base-3/2 expansion of n.
Sequence in context: A068070 A085953 A225614 * A037527 A131584 A037736
KEYWORD
nonn,base
AUTHOR
Tanya Khovanova and PRIMES STEP Senior group, May 09 2018
STATUS
approved