login
A079031
Least k > n such that p(n) divides p(k), where p(k) denotes the k-th partition number (A000041).
2
1, 2, 8, 7, 7, 10, 8, 9, 15, 97, 26, 75, 16, 356, 39, 96, 39, 39, 39, 264, 470, 776, 97, 711, 249, 765, 4458, 334, 699, 1084, 18911, 7150, 1447, 4604, 1399, 446, 36041, 5836, 3504, 1449, 4359, 6034, 688, 60818, 4514, 90825, 34641, 36852, 77173, 11100, 2564
OFFSET
0,2
COMMENTS
A000041(a(n)) mod A000041(n) = 0. - Reinhard Zumkeller, Aug 22 2003
LINKS
EXAMPLE
a(19)=264: A000041(264) = 670448123060170 = 2*5*(7^2)*13*41*1907*1346143 = (13*41*1907*1346143)*(2*5*7^2) = 1368261475633*490 = 1368261475633*A000041(19).
MATHEMATICA
Do[m = PartitionsP[n]; k = n + 1; While[Mod[PartitionsP[k], m] > 0, k++ ]; Print[k], {n, 0, 50}] (* Ryan Propper, Oct 31 2005 *)
PROG
(PARI) a(n) = my(k=n+1, p=numbpart(n)); while (numbpart(k) % p, k++); k; \\ Michel Marcus, May 15 2020
CROSSREFS
Cf. A000041.
Sequence in context: A213930 A319463 A379711 * A203145 A303498 A166539
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Feb 01 2003
EXTENSIONS
More terms from Reinhard Zumkeller, Aug 22 2003
Further terms from Ryan Propper, Oct 31 2005
a(0) inserted by Amiram Eldar, May 15 2020
STATUS
approved