login
A079032
Smallest nontrivial partition number divisible by the n-th partition number.
0
2, 2, 22, 15, 15, 42, 22, 30, 176, 133230930, 2436, 8118264, 231, 413766180933342362, 31185, 118114304, 31185, 31185, 31185, 670448123060170, 426088638015652413417, 1973678121921532286407950000, 133230930, 101121613386982294887579670, 213636919820625
OFFSET
0,1
EXAMPLE
a(5)=42 because the 5th partition number is 7 and the next partition number divisible by 7 is 42.
MAPLE
with(combinat): a:=proc(n) local S, j: S:={}: for j from n+1 to 800 do if type(numbpart(j)/numbpart(n), integer)=true then S:=S union {numbpart(j)} else S:=S fi: od: min(seq(S[i], i=1..nops(S))): end: seq(a(n), n=1..25); # Emeric Deutsch, May 16 2006
MATHEMATICA
a[n_] := Module[{j, pj, pn = PartitionsP[n]}, For[j = n+1, True, j++, If[Divisible[pj = PartitionsP[j], pn], Return[pj]]]];
Table[a[n], {n, 1, 25}] (* Jean-François Alcover, Jul 08 2024 *)
PROG
(PARI) a(n)=if(n<0, 0, s=n+1; while(polcoeff(1/eta(x), s)%polcoeff(1/eta(x), n)>0, s++); polcoeff(1/eta(x), s))
CROSSREFS
Cf. A000041.
Sequence in context: A377251 A014353 A353101 * A190632 A036110 A143807
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Feb 01 2003
EXTENSIONS
More terms from Emeric Deutsch, May 16 2006
a(0) prepended by Alois P. Heinz, Jul 08 2024
STATUS
approved