OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..670
Index entries for linear recurrences with constant coefficients, signature (29,29,29,29,29,29,-435).
FORMULA
G.f.: (t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(435*t^7 - 29*t^6 - 29*t^5 - 29*t^4 - 29*t^3 - 29*t^2 - 29*t + 1).
MAPLE
seq(coeff(series((1+t)*(1-t^7)/(1-30*t+464*t^7-435*t^8), t, n+1), t, n), n = 0 .. 20); # G. C. Greubel, Sep 15 2019
MATHEMATICA
CoefficientList[Series[(1+t)*(1-t^7)/(1-30*t+464*t^7-435*t^8), {t, 0, 20}], t] (* G. C. Greubel, Sep 15 2019 *)
coxG[{7, 435, -29}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 15 2019 *)
PROG
(PARI) my(t='t+O('t^20)); Vec((1+t)*(1-t^7)/(1-30*t+464*t^7-435*t^8)) \\ G. C. Greubel, Sep 15 2019
(Magma) R<t>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^7)/(1-30*t+464*t^7-435*t^8) )); // G. C. Greubel, Sep 15 2019
(Sage)
def A164667_list(prec):
P.<t> = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^7)/(1-30*t+464*t^7-435*t^8)).list()
A164667_list(20) # G. C. Greubel, Sep 15 2019
(GAP) a:=[31, 930, 27900, 837000, 25110000, 753300000, 22598999535];; for n in [8..20] do a[n]:=29*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]+a[n-6]) -435*a[n-7]; od; Concatenation([1], a); # G. C. Greubel, Sep 15 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved