OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..670
Index entries for linear recurrences with constant coefficients, signature (29,29,29,-435).
FORMULA
G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(435*t^4 - 29*t^3 - 29*t^2 - 29*t + 1).
a(n) = 29*(a(n-1) + a(n-2) + a(n-3) - 15*a(n-4)). - G. C. Greubel, Apr 28 2019
MATHEMATICA
coxG[{4, 435, -29}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Apr 24 2016 *)
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(435*t^4-29*t^3-29*t^2 - 29*t+1), {t, 0, 20}], t] (* or *) LinearRecurrence[{29, 29, 29, -435}, {1, 31, 930, 27900, 836535}, 20] (* G. C. Greubel, Dec 10 2016 *)
PROG
(PARI) my(x='x+O('x^20)); Vec((1+x)*(1-x^4)/(1-30*x+464*x^4-435*x^5)) \\ G. C. Greubel, Dec 10 2016, modified Apr 28 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-30*x+464*x^4-435*x^5) )); // G. C. Greubel, Apr 28 2019
(Sage) ((1+x)*(1-x^4)/(1-30*x+464*x^4-435*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019
(GAP) a:=[31, 930, 27900, 836535];; for n in [5..20] do a[n]:=29*(a[n-1]+ a[n-2] +a[n-3] -15*a[n-4]); od; Concatenation([1], a); # G. C. Greubel, Apr 28 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved