login
A163214
Number of reduced words of length n in Coxeter group on 31 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
1
1, 31, 930, 27900, 836535, 25082100, 752044965, 22548807900, 676088221260, 20271372436125, 607803134933490, 18223958540698875, 546414860017738110, 16383333982098029400, 491226816855341457015, 14728612983261055500600
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170750, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
FORMULA
G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(435*t^4 - 29*t^3 - 29*t^2 - 29*t + 1).
a(n) = 29*(a(n-1) + a(n-2) + a(n-3) - 15*a(n-4)). - G. C. Greubel, Apr 28 2019
MATHEMATICA
coxG[{4, 435, -29}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Apr 24 2016 *)
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(435*t^4-29*t^3-29*t^2 - 29*t+1), {t, 0, 20}], t] (* or *) LinearRecurrence[{29, 29, 29, -435}, {1, 31, 930, 27900, 836535}, 20] (* G. C. Greubel, Dec 10 2016 *)
PROG
(PARI) my(x='x+O('x^20)); Vec((1+x)*(1-x^4)/(1-30*x+464*x^4-435*x^5)) \\ G. C. Greubel, Dec 10 2016, modified Apr 28 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-30*x+464*x^4-435*x^5) )); // G. C. Greubel, Apr 28 2019
(Sage) ((1+x)*(1-x^4)/(1-30*x+464*x^4-435*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019
(GAP) a:=[31, 930, 27900, 836535];; for n in [5..20] do a[n]:=29*(a[n-1]+ a[n-2] +a[n-3] -15*a[n-4]); od; Concatenation([1], a); # G. C. Greubel, Apr 28 2019
CROSSREFS
Sequence in context: A213467 A157878 A162835 * A163564 A164030 A164667
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved