login
A164030
Number of reduced words of length n in Coxeter group on 31 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.
1
1, 31, 930, 27900, 837000, 25110000, 753299535, 22598972100, 677968744965, 20339049807900, 610171118005500, 18305122253220000, 549153328988465760, 16474589711416216125, 494237386595541683490, 14827112455463543698875
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170750, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
FORMULA
G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(435*t^6 - 29*t^5 - 29*t^4 - 29*t^3 - 29*t^2 - 29*t + 1).
a(n) = -435*a(n-6) + 29*Sum_{k=1..5} a(n-k). - Wesley Ivan Hurt, May 11 2021
MAPLE
seq(coeff(series((1+t)*(1-t^6)/(1-30*t+464*t^6-435*t^7), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 13 2019
MATHEMATICA
coxG[{6, 435, -29}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Sep 29 2016 *)
CoefficientList[Series[(1+t)*(1-t^6)/(1-30*t+464*t^6-435*t^7), {t, 0, 30}], t] (* G. C. Greubel, Sep 07 2017 *)
PROG
(PARI) my(t='t+O('t^30)); Vec((1+t)*(1-t^6)/(1-30*t+464*t^6-435*t^7)) \\ G. C. Greubel, Sep 07 2017
(Magma) R<t>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^6)/(1-30*t+464*t^6-435*t^7) )); // G. C. Greubel, Aug 13 2019
(Sage)
def A164030_list(prec):
P.<t> = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^6)/(1-30*t+464*t^6-435*t^7)).list()
A164030_list(30) # G. C. Greubel, Aug 13 2019
(GAP) a:=[31, 930, 27900, 837000, 25110000, 753299535];; for n in [7..30] do a[n]:=29*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]) -435*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 13 2019
CROSSREFS
Sequence in context: A162835 A163214 A163564 * A164667 A164992 A165547
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved