OFFSET
1,1
COMMENTS
There are only 17 nonzero terms. - G. C. Greubel, Sep 10 2017
REFERENCES
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices, and Groups, 2nd ed., New York: Springer-Verlag, p. 9, 1993.
H. S. M. Coxeter, Regular Polytopes, 3rd ed., New York: Dover, 1973.
D. M. Y. Sommerville, An Introduction to the Geometry of n Dimensions, New York: Dover, p. 136, 1958.
LINKS
Eric W. Weisstein, Hypersphere.
FORMULA
a(n) = floor( (2*Pi)^n/(n-1)! ).
EXAMPLE
Table of approximate real values before taking integer part.
========================
n (2*Pi)^n / (n-1)!
1 6.28318531 = A019692
2 39.4784176 = 2*A164102
3 124.025107 = 4*A091925
4 259.757576 = 8*A164109
5 408.026246
6 512.740903
7 536.941018
8 481.957131
9 378.528246
10 264.262568
11 166.041068
12 94.8424365
13 49.6593836
14 24.00147
15 10.7718345
16 4.5120955
17 1.77189576
18 0.654891141
19 0.228600133
20 0.075596684
========================
MAPLE
A164081 := proc(n) (2*Pi)^n/(n-1)! ; floor(%) ; end: seq(A164081(n), n=1..80) ; # R. J. Mathar, Sep 09 2009
MATHEMATICA
Table[Floor[(2*Pi)^n/(n - 1)!], {n, 1, 100}] (* G. C. Greubel, Sep 10 2017 *)
PROG
(PARI) for(n=1, 100, print1(floor((2*Pi)^n/(n-1)!), ", ")) \\ G. C. Greubel, Sep 10 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Aug 09 2009
EXTENSIONS
Definition corrected by R. J. Mathar, Sep 09 2009
STATUS
approved