The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A074457 Consider surface area of unit sphere as a function of the dimension d; maximize this as a function of d (considered as a continuous variable); sequence gives decimal expansion of the best d. 5
 7, 2, 5, 6, 9, 4, 6, 4, 0, 4, 8, 6, 0, 5, 7, 6, 7, 8, 0, 1, 3, 2, 8, 3, 8, 3, 8, 8, 6, 9, 0, 7, 6, 9, 2, 3, 6, 6, 1, 9, 0, 1, 7, 2, 3, 7, 1, 8, 3, 2, 1, 4, 8, 5, 7, 5, 0, 9, 8, 7, 9, 6, 7, 8, 7, 7, 7, 1, 0, 9, 3, 4, 6, 7, 3, 6, 8, 2, 0, 2, 7, 2, 8, 1, 7, 7, 2, 0, 2, 3, 8, 4, 8, 9, 7, 9, 2, 4, 6, 9, 2, 6 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES N. Cakic, D. Letic, B. Davidovic, The Hyperspherical functions of a derivative, Abstr. Appl. Anal. (2010) 364292 doi:10.1155/2010/364292 LINKS Dusko Letic, Nenad Cakic, Branko Davidovic and Ivana Berkovic, Orthogonal and diagonal dimension fluxes of hyperspherical function, Advances in Difference Equations 2012, 2012:22. - From N. J. A. Sloane, Sep 04 2012 Eric Weisstein's World of Mathematics, Hypersphere FORMULA Equals 2 + A074455. EXAMPLE 7.2569464048605767801328383886907692366190172371832148575098796787771093\ 4673682027281772023848979246926957... MATHEMATICA RealDigits[ FindMinimum[ -n*Pi^(n/2)/(n/2)!, {n, 7}, WorkingPrecision -> 125] [[2, 1, 2]]] [[1]] x /. FindRoot[ PolyGamma[x/2] == Log[Pi], {x, 7}, WorkingPrecision -> 105] // RealDigits // First (* Jean-François Alcover, Mar 28 2013 *) CROSSREFS Surface area is A074456. Cf. A072478 & A072479. Sequence in context: A066903 A194886 A196764 * A200237 A072761 A337357 Adjacent sequences:  A074454 A074455 A074456 * A074458 A074459 A074460 KEYWORD cons,nonn AUTHOR Robert G. Wilson v, Aug 22 2002 EXTENSIONS Corrected by Eric W. Weisstein, Aug 31 2003 Corrected by Martin Fuller, Jul 12 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 26 12:57 EDT 2021. Contains 347666 sequences. (Running on oeis4.)