login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A074455 Consider volume of unit sphere as a function of the dimension d; maximize this as a function of d (considered as a continuous variable); sequence gives decimal expansion of the best d. 8
5, 2, 5, 6, 9, 4, 6, 4, 0, 4, 8, 6, 0, 5, 7, 6, 7, 8, 0, 1, 3, 2, 8, 3, 8, 3, 8, 8, 6, 9, 0, 7, 6, 9, 2, 3, 6, 6, 1, 9, 0, 1, 7, 2, 3, 7, 1, 8, 3, 2, 1, 4, 8, 5, 7, 5, 0, 9, 8, 7, 9, 6, 7, 8, 7, 7, 7, 1, 0, 9, 3, 4, 6, 7, 3, 6, 8, 2, 0, 2, 7, 2, 8, 1, 7, 7, 2, 0, 2, 3, 8, 4, 8, 9, 7, 9, 2, 4, 6, 9, 2, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
From David W. Wilson, Jul 12 2007: (Start)
For an integer d, the volume of a d-dimensional unit ball is v(d) = Pi^(d/2)/(d/2)! and its surface area is area(d) = d*Pi^(d/2)/(d/2)! = d*v(d). If we interpolate n! = gamma(n+1) we can define v(d) and area(d) as continuous functions for (at least) d >= 0.
A074457 purports to minimize area(d). Since area(d+2) = 2*Pi*v(d), area() is minimized at y = x+2; therefore A074457 coincides with the current sequence except at the first term. (End)
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 9.
LINKS
Brian Hayes, An Adventure in the Nth Dimension, pp. 30-42 of M. Pitici, editor, The Best Writing on Mathematics 2012, Princeton Univ. Press, 2012. See p. 42. - From _N. J. A. Sloane_, Jan 13 2013; alternative link.
Eric Weisstein's World of Mathematics, Ball.
FORMULA
d = root of Psi((1/2)*d + 1) = log(Pi).
d is 2 less than the number with decimal digits A074457 (the hypersphere dimension that maximizes hypersurface area). - Eric W. Weisstein, Dec 02 2014
EXAMPLE
5.256946404860576780132838388690769236619017237183214857509879678777109...
MATHEMATICA
x /. FindRoot[ PolyGamma[1 + x/2] == Log[Pi], {x, 5}, WorkingPrecision -> 105] // RealDigits // First (* Jean-François Alcover, Mar 28 2013 *)
PROG
(PARI)
hyperspheresurface(d)=2*Pi^(d/2)/gamma(d/2)
hyperspherevolume(d)=hyperspheresurface(d)/d
FindMax(fn_x, lo, hi)=
{
local(oldprecision, x, y, z);
oldprecision = default(realprecision);
default(realprecision, oldprecision+10);
while (hi-lo > 10^-oldprecision,
while (1,
z = vector(2, i, lo*(3-i)/3 + hi*i/3);
y = vector(2, i, eval(Str("x = z[" i "]; " fn_x)));
if (abs(y[1]-y[2]) > 10^(5-default(realprecision)), break);
default(realprecision, default(realprecision)+10);
);
if (y[1] < y[2], lo = z[1], hi = z[2]);
);
default(realprecision, oldprecision);
(lo + hi) / 2.
}
default(realprecision, 105);
A074455=FindMax("hyperspherevolume(x)", 1, 9)
A074457=FindMax("hyperspheresurface(x)", 1, 9)
A074454=hyperspherevolume(A074455)
A074456=hyperspheresurface(A074457)
/* David W. Cantrell */
CROSSREFS
Cf. A074457.
The volume is given by A074454. Cf. A072345 & A072346.
Sequence in context: A082571 A354195 A087300 * A339161 A142702 A236184
KEYWORD
cons,nonn
AUTHOR
Robert G. Wilson v, Aug 22 2002
EXTENSIONS
Corrected by Eric W. Weisstein, Aug 31 2003
Corrected by Martin Fuller, Jul 12 2007
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 09:35 EDT 2024. Contains 373501 sequences. (Running on oeis4.)