login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194886
Units' digits of the nonzero decagonal numbers.
0
1, 0, 7, 2, 5, 6, 5, 2, 7, 0, 1, 0, 7, 2, 5, 6, 5, 2, 7, 0, 1, 0, 7, 2, 5, 6, 5, 2, 7, 0, 1, 0, 7, 2, 5, 6, 5, 2, 7, 0, 1, 0, 7, 2, 5, 6, 5, 2, 7, 0, 1, 0, 7, 2, 5, 6, 5, 2, 7, 0, 1, 0, 7, 2, 5, 6, 5, 2, 7, 0, 1, 0, 7, 2, 5, 6, 5, 2, 7, 0, 1, 0, 7, 2, 5, 6
OFFSET
1,3
COMMENTS
This is a periodic sequence with period 10 and cycle 1,0,7,2,5,6,5,2,7,0.
FORMULA
a(n) = a(n-10).
a(n) = 35 -a(n-1) -a(n-2) -a(n-3) -a(n-4) -a(n-5) -a(n-6) -a(n-7) -a(n-8) -a(n-9).
a(n) = mod(n(4n-3),10).
G.f.: x*(1 +7*x^2 +2*x^3 +5*x^4 +6*x^5 +5*x^6 +2*x^7 +7*x^8)/((1-x)*(1+x)*(1 +x +x^2 +x^3 +x^4)*(1 -x +x^2 -x^3 +x^4)).
a(n) = -n^2 + 2*n (mod 10). - Arkadiusz Wesolowski, Jul 03 2012
a(n) = A010879(A001107(n)). - Michel Marcus, Aug 10 2015
EXAMPLE
The seventh nonzero decagonal number is A001107(7)=175, which has units' digit 5. Hence a(7)=5.
MATHEMATICA
Table[Mod[n (4 n - 3), 10], {n, 86}]
PadRight[{}, 120, {1, 0, 7, 2, 5, 6, 5, 2, 7, 0}] (* Harvey P. Dale, Aug 17 2019 *)
CROSSREFS
Sequence in context: A366599 A352890 A066903 * A196764 A074457 A200237
KEYWORD
nonn,easy,base
AUTHOR
Ant King, Sep 07 2011
STATUS
approved