OFFSET
1,3
COMMENTS
This is a periodic sequence with period 10 and cycle 1,0,7,2,5,6,5,2,7,0.
FORMULA
a(n) = a(n-10).
a(n) = 35 -a(n-1) -a(n-2) -a(n-3) -a(n-4) -a(n-5) -a(n-6) -a(n-7) -a(n-8) -a(n-9).
a(n) = mod(n(4n-3),10).
G.f.: x*(1 +7*x^2 +2*x^3 +5*x^4 +6*x^5 +5*x^6 +2*x^7 +7*x^8)/((1-x)*(1+x)*(1 +x +x^2 +x^3 +x^4)*(1 -x +x^2 -x^3 +x^4)).
a(n) = -n^2 + 2*n (mod 10). - Arkadiusz Wesolowski, Jul 03 2012
EXAMPLE
The seventh nonzero decagonal number is A001107(7)=175, which has units' digit 5. Hence a(7)=5.
MATHEMATICA
Table[Mod[n (4 n - 3), 10], {n, 86}]
PadRight[{}, 120, {1, 0, 7, 2, 5, 6, 5, 2, 7, 0}] (* Harvey P. Dale, Aug 17 2019 *)
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Ant King, Sep 07 2011
STATUS
approved