Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Feb 07 2021 23:48:32
%S 6,39,124,259,408,512,536,481,378,264,166,94,49,24,10,4,1,0,0,0,0,0,0,
%T 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
%U 0,0
%N Floor of 2^(n-1) times the surface area of the unit sphere in 2n-dimensional space.
%C The rounded values of this real sequence is A164082, the ceiling is A164083.
%C The surface area of n-dimensional sphere of radius r is n*V_n*r^(n-1); see A072478/A072479.
%C There are only 17 nonzero terms. - _G. C. Greubel_, Sep 10 2017
%D J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices, and Groups, 2nd ed., New York: Springer-Verlag, p. 9, 1993.
%D H. S. M. Coxeter, Regular Polytopes, 3rd ed., New York: Dover, 1973.
%D D. M. Y. Sommerville, An Introduction to the Geometry of n Dimensions, New York: Dover, p. 136, 1958.
%H Eric W. Weisstein, <a href="http://mathworld.wolfram.com/Hypersphere.html">Hypersphere</a>.
%F a(n) = floor( (2*Pi)^n/(n-1)! ).
%e Table of approximate real values before taking integer part.
%e ========================
%e n (2*Pi)^n / (n-1)!
%e 1 6.28318531 = A019692
%e 2 39.4784176 = 2*A164102
%e 3 124.025107 = 4*A091925
%e 4 259.757576 = 8*A164109
%e 5 408.026246
%e 6 512.740903
%e 7 536.941018
%e 8 481.957131
%e 9 378.528246
%e 10 264.262568
%e 11 166.041068
%e 12 94.8424365
%e 13 49.6593836
%e 14 24.00147
%e 15 10.7718345
%e 16 4.5120955
%e 17 1.77189576
%e 18 0.654891141
%e 19 0.228600133
%e 20 0.075596684
%e ========================
%p A164081 := proc(n) (2*Pi)^n/(n-1)! ; floor(%) ; end: seq(A164081(n),n=1..80) ; # _R. J. Mathar_, Sep 09 2009
%t Table[Floor[(2*Pi)^n/(n - 1)!], {n, 1, 100}] (* _G. C. Greubel_, Sep 10 2017 *)
%o (PARI) for(n=1,100, print1(floor((2*Pi)^n/(n-1)!), ", ")) \\ _G. C. Greubel_, Sep 10 2017
%Y Cf. A072345, A072346, A072478, A072479, A074457, A122510, A154255.
%K nonn
%O 1,1
%A _Jonathan Vos Post_, Aug 09 2009
%E Definition corrected by _R. J. Mathar_, Sep 09 2009