login
A163223
Number of reduced words of length n in Coxeter group on 40 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
1
1, 40, 1560, 60840, 2371980, 92476800, 3605409600, 140564736000, 5480222014020, 213658376756760, 8329936604744040, 324760699264187160, 12661502336823753660, 493636212105145265520, 19245481572342746507280
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170759, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
FORMULA
G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(741*t^4 - 38*t^3 - 38*t^2 - 38*t + 1).
a(n) = 38*a(n-1)+38*a(n-2)+38*a(n-3)-741*a(n-4). - Wesley Ivan Hurt, May 06 2021
MATHEMATICA
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(741*t^4-38*t^3-38*t^2 - 38*t+1), {t, 0, 20}], t] (* or *) Join[{1}, LinearRecurrence[{38, 38, 38, -741}, {40, 1560, 60840, 2371980}, 20] (* G. C. Greubel, Dec 11 2016 *)
coxG[{4, 741, -38}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 30 2019 *)
PROG
(PARI) my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(741*t^4- 38*t^3 -38*t^2-38*t+1)) \\ G. C. Greubel, Dec 11 2016
(Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-39*x+779*x^4-741*x^5) )); // G. C. Greubel, Apr 30 2019
(Sage) ((1+x)*(1-x^4)/(1-39*x+779*x^4-741*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 30 2019
CROSSREFS
Sequence in context: A135644 A165371 A162877 * A163669 A164085 A164684
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved