login
A163224
Number of reduced words of length n in Coxeter group on 41 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
1
1, 41, 1640, 65600, 2623180, 104894400, 4194464820, 167726145600, 6706948607580, 268194081870000, 10724409825744420, 428842296999090000, 17148329715447559980, 685718769084764781600, 27420176663127165184020
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170760, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
FORMULA
G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(780*t^4 - 39*t^3 - 39*t^2 - 39*t + 1).
a(n) = 39*a(n-1)+39*a(n-2)+39*a(n-3)-780*a(n-4). - Wesley Ivan Hurt, May 06 2021
MATHEMATICA
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(780*t^4-39*t^3-39*t^2 - 39*t+1), {t, 0, 20}], t] (* or *) Join[{1}, LinearRecurrence[ {39, 39, 39, -780}, {41, 1640, 65600, 2623180} 20]] (* G. C. Greubel, Dec 11 2016 *)
coxG[{4, 780, -39}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jan 18 2019 *)
PROG
(PARI) my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(780*t^4-39*t^3- 39*t^2-39*t+1)) \\ G. C. Greubel, Dec 11 2016
(Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-40*x+819*x^4-780*x^5) )); // G. C. Greubel, Apr 30 2019
(Sage) ((1+x)*(1-x^4)/(1-40*x+819*x^4-780*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 30 2019
CROSSREFS
Sequence in context: A180667 A281608 A162878 * A163677 A164091 A164685
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved