login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A163221 Number of reduced words of length n in Coxeter group on 38 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I. 1
1, 38, 1406, 52022, 1924111, 71166096, 2632183848, 97355219328, 3600827035866, 133181923185576, 4925930761424952, 182192847843197736, 6738672428195210748, 249239784283952410080, 9218502714272560450272 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The initial terms coincide with those of A170757, although the two sequences are eventually different.

Computed with MAGMA using commands similar to those used to compute A154638.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..635

Index entries for linear recurrences with constant coefficients, signature (36, 36, 36, -666).

FORMULA

G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(666*t^4 - 36*t^3 - 36*t^2 - 36*t + 1).

a(n) = 36*a(n-1)+36*a(n-2)+36*a(n-3)-666*a(n-4). - Wesley Ivan Hurt, May 06 2021

MATHEMATICA

coxG[{4, 666, -36}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jul 09 2015 *)

CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(666*t^4-36*t^3-36*t^2 - 36*t+1), {t, 0, 20}], t] (* or *) LinearRecurrence[{36, 36, 36, -666}, {1, 38, 1406, 52022, 1924111}, 20] (* G. C. Greubel, Dec 11 2016; modified by Georg Fischer, Apr 08 2019 *)

PROG

(PARI) my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(666*t^4-36*t^3 - 36*t^2-36*t+1)) \\ G. C. Greubel, Dec 11 2016

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-37*x+702*x^4-666*x^5) )); // G. C. Greubel, May 01 2019

(Sage) ((1+x)*(1-x^4)/(1-37*x+702*x^4-666*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 01 2019

(GAP) a:=[38, 1406, 52022, 1924111];; for n in [5..20] do a[n]:=36*(a[n-1]+ a[n-2]+a[n-3]) -666*a[n-4]; od; Concatenation([1], a); # G. C. Greubel, May 01 2019

CROSSREFS

Sequence in context: A027657 A268885 A162858 * A163660 A164071 A164674

Adjacent sequences:  A163218 A163219 A163220 * A163222 A163223 A163224

KEYWORD

nonn

AUTHOR

John Cannon and N. J. A. Sloane, Dec 03 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 24 04:47 EST 2022. Contains 350534 sequences. (Running on oeis4.)