OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..638
Index entries for linear recurrences with constant coefficients, signature (36, 36, -666).
FORMULA
G.f.: (t^3 + 2*t^2 + 2*t + 1)/(666*t^3 - 36*t^2 - 36*t + 1).
a(n) = 36*a(n-1) + 36*a(n-2) - 666*a(n-3), n > 0. - Muniru A Asiru, Oct 25 2018
G.f.: (1+x)*(1-x^3)/(1 - 37*x + 702*x^3 - 666*x^4). - G. C. Greubel, Apr 27 2019
MAPLE
seq(coeff(series((x^3+2*x^2+2*x+1)/(666*x^3-36*x^2-36*x+1), x, n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 25 2018
MATHEMATICA
CoefficientList[Series[(t^3+2*t^2+2*t+1)/(666*t^3-36*t^2-36*t+1), {t, 0, 20}], t] (* G. C. Greubel, Oct 24 2018 *)
coxG[{3, 666, -36}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 27 2019 *)
PROG
(PARI) my(t='t+O('t^20)); Vec((t^3+2*t^2+2*t+1)/(666*t^3-36*t^2-36*t+1)) \\ G. C. Greubel, Oct 24 2018
(Magma) R<t>:=PowerSeriesRing(Integers(), 20); Coefficients(R!((t^3 + 2*t^2+2*t+1)/(666*t^3-36*t^2-36*t+1))); // G. C. Greubel, Oct 24 2018
(GAP) a:=[38, 1406, 51319];; for n in [4..20] do a[n]:=36*a[n-1]+36*a[n-2]-666*a[n-3]; od; Concatenation([1], a); # Muniru A Asiru, Oct 25 2018
(Sage) ((1+x)*(1-x^3)/(1 -37*x +702*x^3 -666*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved