OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..615
Index entries for linear recurrences with constant coefficients, signature (38, 38, -741).
FORMULA
G.f.: (t^3 + 2*t^2 + 2*t + 1)/(741*t^3 - 38*t^2 - 38*t + 1).
a(n) = 38*a(n-1) + 38*a(n-2) - 741*a(n-3), n > 0. - Muniru A Asiru, Oct 24 2018
G.f.: (1+x)*(1-x^3)/(1 - 39*x + 779*x^3 - 741*x^4). - G. C. Greubel, Apr 27 2019
MAPLE
seq(coeff(series((x^3+2*x^2+2*x+1)/(741*x^3-38*x^2-38*x+1), x, n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 24 2018
MATHEMATICA
coxG[{3, 741, -38}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jan 29 2017 *)
CoefficientList[Series[(t^3+2*t^2+2*t+1)/(741*t^3-38*t^2-38*t+1), {t, 0, 20}], t] (* G. C. Greubel, Oct 24 2018 *)
PROG
(PARI) my(t='t+O('t^20)); Vec((t^3+2*t^2+2*t+1)/(741*t^3-38*t^2-38*t+1)) \\ G. C. Greubel, Oct 24 2018
(Magma) R<t>:=PowerSeriesRing(Integers(), 20); Coefficients(R!((t^3 + 2*t^2+2*t+1)/(741*t^3-38*t^2-38*t+1))); // G. C. Greubel, Oct 24 2018
(GAP) a:=[40, 1560, 60060];; for n in [4..20] do a[n]:=38*a[n-1]+38*a[n-2] -741*a[n-3]; od; Concatenation([1], a); # Muniru A Asiru, Oct 24 2018
(Sage) ((1+x)*(1-x^3)/(1 -39*x +779*x^3 -741*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 27 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved