login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162879
Number of reduced words of length n in Coxeter group on 42 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.
1
1, 42, 1722, 69741, 2824080, 114340800, 4629407580, 187434189600, 7588784431200, 307252630616400, 12439960566432000, 503665724648352000, 20392280251485912000, 825637071380896320000, 33428168171083640640000
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170761, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
FORMULA
G.f.: (t^3 + 2*t^2 + 2*t + 1)/(820*t^3 - 40*t^2 - 40*t + 1).
a(n) = 40*a(n-1) + 40*a(n-2) - 820*a(n-3), n > 0. - Muniru A Asiru, Oct 24 2018
G.f.: (1+x)*(1-x^3)/(1 - 41*x + 860*x^3 - 820*x^4). - G. C. Greubel, Apr 27 2019
MAPLE
seq(coeff(series((x^3+2*x^2+2*x+1)/(820*x^3-40*x^2-40*x+1), x, n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 24 2018
MATHEMATICA
CoefficientList[Series[(t^3+2*t^2+2*t+1)/(820*t^3-40*t^2-40*t+1), {t, 0, 20}], t] (* Wesley Ivan Hurt, Apr 12 2017 *)
Join[{1}, LinearRecurrence[{40, 40, -820}, {42, 1722, 69741}, 20]] (* Vincenzo Librandi, Apr 14 2017 *)
coxG[{3, 820, -40}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 27 2019 *)
PROG
(Magma) I:=[1, 42, 1722, 69741]; [n le 4 select I[n] else 40*Self(n-1) +40*Self(n-2)-820*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Apr 14 2017
(Magma) R<t>:=PowerSeriesRing(Integers(), 20); Coefficients(R!((t^3 +2*t^2+2*t+1)/(820*t^3-40*t^2-40*t+1))); // G. C. Greubel, Oct 24 2018
(PARI) my(t='t+O('t^20)); Vec((t^3+2*t^2+2*t+1)/(820*t^3-40*t^2-40*t+1)) \\ G. C. Greubel, Oct 24 2018
(GAP) a:=[42, 1722, 69741];; for n in [4..20] do a[n]:=40*a[n-1]+40*a[n-2] -820*a[n-3]; od; Concatenation([1], a); # Muniru A Asiru, Oct 24 2018
(Sage) ((1+x)*(1-x^3)/(1 -41*x +860*x^3 -820*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 27 2019
CROSSREFS
Sequence in context: A215545 A004997 A120815 * A163225 A163743 A164112
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved