login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162623
Triangle read by rows in which row n lists n terms, starting with n, such that the difference between successive terms is equal to n^4 - 1 = A123865(n).
5
1, 2, 17, 3, 83, 163, 4, 259, 514, 769, 5, 629, 1253, 1877, 2501, 6, 1301, 2596, 3891, 5186, 6481, 7, 2407, 4807, 7207, 9607, 12007, 14407, 8, 4103, 8198, 12293, 16388, 20483, 24578, 28673, 9, 6569, 13129, 19689, 26249, 32809, 39369, 45929, 52489, 10
OFFSET
1,2
COMMENTS
See also the triangles of A162622 and A162624.
FORMULA
Row sums: n*(n^5 - n^4 + n + 1)/2. - R. J. Mathar, Jul 20 2009
EXAMPLE
Triangle begins:
1;
2, 17;
3, 83, 163;
4, 259, 514, 769;
5, 629, 1253, 1877, 2501;
6, 1301, 2596, 3891, 5186, 6481;
MAPLE
A162623 := proc(n, k) n+k*(n^4-1) ; end: seq(seq(A162623(n, k), k=0..n-1), n=1..15) ; # R. J. Mathar, Sep 27 2009
MATHEMATICA
dst[n_]:=Module[{c=n^4-1}, Range[n, n*c, c]]; Flatten[Join[{1}, Table[dst[n], {n, 2, 10}]]] (* Harvey P. Dale, Jul 29 2014 *)
KEYWORD
easy,nonn,tabl
AUTHOR
Omar E. Pol, Jul 12 2009
EXTENSIONS
More terms from R. J. Mathar, Sep 27 2009
STATUS
approved