

A165234


Least prime p such that 2x^2 + p produces primes for x=0..n1 and composite for x=n.


3



2, 17, 3, 1481, 5, 149, 569, 2081, 2339, 5939831, 11, 33164857769
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Other known values: a(14)=272259344081 and a(29)=29. There are no other terms less than 10^12. The primes p = 3, 5, 11, and 29 produce p consecutive distinct primes because the imaginary quadratic field Q(sqrt(2p)) has class number 2. Assuming the prime ktuples conjecture, this sequence is defined for n>0.


REFERENCES

Paulo Ribenboim, My Numbers, My Friends, Springer,2000, pp. 349350.


LINKS

Table of n, a(n) for n=1..12.
R. A. Mollin, Primeproducing quadratics, Amer. Math. Monthly 104 (1997), 529544.
Eric W. Weisstein, PrimeGenerating Polynomial


MATHEMATICA

PrimeRun[p_Integer] := Module[{k=0}, While[PrimeQ[2k^2+p], k++ ]; k]; nn=9; t=Table[0, {nn}]; cnt=0; p=1; While[cnt<nn, p=NextPrime[p]; n=PrimeRun[p]; If[n<=nn && t[[n]]==0, t[[n]]=p; cnt++ ]]; t


CROSSREFS

Cf. A007641, A050265, A161008, A164926.
Sequence in context: A108883 A199295 A162623 * A155895 A293179 A144212
Adjacent sequences: A165231 A165232 A165233 * A165235 A165236 A165237


KEYWORD

hard,nonn


AUTHOR

T. D. Noe, Sep 09 2009


STATUS

approved



