login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A162624 Triangle read by rows in which row n lists n terms, starting with n^4 + n - 1, such that the difference between successive terms is equal to n^4 - 1 = A123865(n). 6
1, 17, 32, 83, 163, 243, 259, 514, 769, 1024, 629, 1253, 1877, 2501, 3125, 1301, 2596, 3891, 5186, 6481, 7776, 2407, 4807, 7207, 9607, 12007, 14407, 16807, 4103, 8198, 12293, 16388, 20483, 24578, 28673, 32768, 6569, 13129, 19689, 26249, 32809 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Note that the last term of the n-th row is the 5th power of n, A000584(n).

See also the triangles of A162622 and A162623.

LINKS

Nathaniel Johnston, Table of n, a(n) for n = 1..10000

FORMULA

Row sums: n*(n^5 + n^4 + n - 1)/2. - R. J. Mathar, Jul 20 2009

EXAMPLE

Triangle begins:

     1;

    17,   32;

    83,  163,  243;

   259,  514,  769, 1024;

   629, 1253, 1877, 2501, 3125;

  1301, 2596, 3891, 5186, 6481, 7776;

  ...

MAPLE

A162624 := proc(n, k) return n+k*(n^4-1): end: seq(seq(A162624(n, k), k=1..n), n=1..10); # Nathaniel Johnston, Apr 30 2011

CROSSREFS

Cf. A000584, A123865, A159797, A162609, A162610, A162611, A162612, A162613, A162614, A162615, A162616, A162622, A162623.

Sequence in context: A043127 A043907 A173054 * A029817 A162504 A085255

Adjacent sequences:  A162621 A162622 A162623 * A162625 A162626 A162627

KEYWORD

easy,nonn,tabl

AUTHOR

Omar E. Pol, Jul 12 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 16:25 EDT 2019. Contains 328302 sequences. (Running on oeis4.)