|
|
A162624
|
|
Triangle read by rows in which row n lists n terms, starting with n^4 + n - 1, such that the difference between successive terms is equal to n^4 - 1 = A123865(n).
|
|
6
|
|
|
1, 17, 32, 83, 163, 243, 259, 514, 769, 1024, 629, 1253, 1877, 2501, 3125, 1301, 2596, 3891, 5186, 6481, 7776, 2407, 4807, 7207, 9607, 12007, 14407, 16807, 4103, 8198, 12293, 16388, 20483, 24578, 28673, 32768, 6569, 13129, 19689, 26249, 32809
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Note that the last term of the n-th row is the 5th power of n, A000584(n).
See also the triangles of A162622 and A162623.
|
|
LINKS
|
Nathaniel Johnston, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
Row sums: n*(n^5 + n^4 + n - 1)/2. - R. J. Mathar, Jul 20 2009
|
|
EXAMPLE
|
Triangle begins:
1;
17, 32;
83, 163, 243;
259, 514, 769, 1024;
629, 1253, 1877, 2501, 3125;
1301, 2596, 3891, 5186, 6481, 7776;
...
|
|
MAPLE
|
A162624 := proc(n, k) return n+k*(n^4-1): end: seq(seq(A162624(n, k), k=1..n), n=1..10); # Nathaniel Johnston, Apr 30 2011
|
|
MATHEMATICA
|
Table[NestList[#+n^4-1&, n^4+n-1, n-1], {n, 10}]//Flatten (* Harvey P. Dale, Apr 28 2022 *)
|
|
CROSSREFS
|
Cf. A000584, A123865, A159797, A162609, A162610, A162611, A162612, A162613, A162614, A162615, A162616, A162622, A162623.
Sequence in context: A043127 A043907 A173054 * A029817 A162504 A336235
Adjacent sequences: A162621 A162622 A162623 * A162625 A162626 A162627
|
|
KEYWORD
|
easy,nonn,tabl
|
|
AUTHOR
|
Omar E. Pol, Jul 12 2009
|
|
STATUS
|
approved
|
|
|
|