The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A162614 Triangle read by rows in which row n lists n+1 terms, starting with n, such that the difference between successive terms is equal to n^3 - 1. 13
 0, 1, 1, 2, 9, 16, 3, 29, 55, 81, 4, 67, 130, 193, 256, 5, 129, 253, 377, 501, 625, 6, 221, 436, 651, 866, 1081, 1296, 7, 349, 691, 1033, 1375, 1717, 2059, 2401, 8, 519, 1030, 1541, 2052, 2563, 3074, 3585, 4096, 9, 737, 1465, 2193, 2921, 3649, 4377, 5105, 5833 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Note that the last term of the n-th row is the fourth power of n, A000583(n). See also the triangles of A162615 and A162616. LINKS FORMULA Sum_{k=0..n} T(n,k) = n*(n^2-n+1)*(n+1)^2/2 (row sums). - R. J. Mathar, Jul 20 2009 T(n,k) = n + k*(n^3-1). - R. J. Mathar, Oct 20 2009 EXAMPLE Triangle begins:   0;   1,   1;   2,   9,  16;   3,  29,  55,  81;   4,  67, 130, 193, 256;   5, 129, 253, 377, 501,  625;   6, 221, 436, 651, 866, 1081, 1296;   ... PROG From R. J. Mathar, Oct 20 2009: (Start) (Python) def A162614(n, k):     return n+k*(n**3-1) print([A162614(n, k) for n in range(20) for k in range(n+1)]) (End) CROSSREFS Cf. A000583, A068601, A159797, A162609, A162610, A162611, A162612, A162613, A162615, A162616, A162622, A162623, A162624. Sequence in context: A067547 A166374 A083783 * A031238 A224859 A136345 Adjacent sequences:  A162611 A162612 A162613 * A162615 A162616 A162617 KEYWORD easy,nonn,tabl AUTHOR Omar E. Pol, Jul 15 2009 EXTENSIONS More terms from R. J. Mathar, Oct 20 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 28 03:16 EDT 2021. Contains 347698 sequences. (Running on oeis4.)