login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A162614 Triangle read by rows in which row n lists n+1 terms, starting with n, such that the difference between successive terms is equal to n^3 - 1. 13
0, 1, 1, 2, 9, 16, 3, 29, 55, 81, 4, 67, 130, 193, 256, 5, 129, 253, 377, 501, 625, 6, 221, 436, 651, 866, 1081, 1296, 7, 349, 691, 1033, 1375, 1717, 2059, 2401, 8, 519, 1030, 1541, 2052, 2563, 3074, 3585, 4096, 9, 737, 1465, 2193, 2921, 3649, 4377, 5105, 5833 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Note that the last term of the n-th row is the fourth power of n, A000583(n).

See also the triangles of A162615 and A162616.

LINKS

Table of n, a(n) for n=0..53.

FORMULA

Sum_{k=0..n} T(n,k) = n*(n^2-n+1)*(n+1)^2/2 (row sums). - R. J. Mathar, Jul 20 2009

T(n,k) = n + k*(n^3-1). - R. J. Mathar, Oct 20 2009

EXAMPLE

Triangle begins:

  0;

  1,   1;

  2,   9,  16;

  3,  29,  55,  81;

  4,  67, 130, 193, 256;

  5, 129, 253, 377, 501,  625;

  6, 221, 436, 651, 866, 1081, 1296;

PROG

From R. J. Mathar, Oct 20 2009: (Start)

(Python) def A162614(n, k):

...return n+k*(n**3-1)

print([A162614(n, k) for n in range(0, 20) for k in range(0, n+1)])

(End)

CROSSREFS

Cf. A000583, A068601, A159797, A162609, A162610, A162611, A162612, A162613, A162615, A162616, A162622, A162623, A162624.

Sequence in context: A067547 A166374 A083783 * A031238 A224859 A136345

Adjacent sequences:  A162611 A162612 A162613 * A162615 A162616 A162617

KEYWORD

easy,nonn,tabl

AUTHOR

Omar E. Pol, Jul 15 2009

EXTENSIONS

More terms from R. J. Mathar, Oct 20 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 10 07:14 EDT 2020. Contains 336368 sequences. (Running on oeis4.)