login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162617
G.f. is the polynomial (1-x^3) * (1-x^6) * (1-x^9) * (1-x^12) * (1-x^15) * (1-x^18) * (1-x^21) * (1-x^24) * (1-x^27) * (1-x^30) / (1-x)^10.
1
1, 10, 55, 219, 705, 1947, 4784, 10715, 22253, 43395, 80223, 141648, 240305, 393602, 624920, 964955, 1453187, 2139455, 3085611, 4367220, 6075267, 8317827, 11221650, 14933610, 19621965, 25477374, 32713617, 41567965, 52301149, 65196880
OFFSET
0,2
COMMENTS
This is a row of the triangle in A162499.
Only finitely many terms are nonzero.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..155 (complete sequence)
MATHEMATICA
CoefficientList[ Series[Times @@ (1 - x^(3 Range@10))/(1 - x)^10, {x, 0, 70}], x] (* Vincenzo Librandi, Mar 14 2013 and slightly modified by Robert G. Wilson v, Jul 23 2018 *)
PROG
(PARI) x='x+O('x^155); Vec((1-x^3)*(1-x^6)*(1-x^9)*(1-x^12)*(1-x^15)*(1-x^18)*(1-x^21)*(1-x^24)*(1-x^27)*(1-x^30)/(1-x)^10) /* complete row */ \\ G. C. Greubel, Jul 06 2018
(Magma) m:=155; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x^3)*(1-x^6)*(1-x^9)*(1-x^12)*(1-x^15)*(1-x^18)*(1-x^21)*(1-x^24)*(1-x^27)*(1-x^30)/(1-x)^10)); /* complete row */ // G. C. Greubel, Jul 06 2018
CROSSREFS
Sequence in context: A341070 A373733 A244871 * A341139 A070212 A341207
KEYWORD
nonn,fini,full
AUTHOR
N. J. A. Sloane, Dec 02 2009
STATUS
approved