login
A162615
Triangle read by rows in which row n lists n terms, starting with n, such that the difference between successive terms is equal to n^3 - 1 = A068601(n).
6
1, 2, 9, 3, 29, 55, 4, 67, 130, 193, 5, 129, 253, 377, 501, 6, 221, 436, 651, 866, 1081, 7, 349, 691, 1033, 1375, 1717, 2059, 8, 519, 1030, 1541, 2052, 2563, 3074, 3585, 9, 737, 1465, 2193, 2921, 3649, 4377, 5105, 5833, 10, 1009, 2008, 3007, 4006, 5005, 6004
OFFSET
1,2
COMMENTS
See also the triangles of A162614 and A162616.
LINKS
FORMULA
Row sums: n*(n^4 - n^3 + n + 1)/2. - R. J. Mathar, Jul 20 2009
EXAMPLE
Triangle begins:
1;
2, 9;
3, 29, 55;
4, 67, 130, 193;
5, 129, 253, 377, 501;
6, 221, 436, 651, 866, 1081;
...
MAPLE
A162615 := proc(n, k) n+(k-1)*(n^3-1) ; end proc: seq(seq(A162615(n, k), k=1..n), n=1..15) ; # R. J. Mathar, Feb 05 2010
MATHEMATICA
Flatten[Table[c=n^3-1; NestList[#+c&, n, n-1], {n, 10}]] (* Harvey P. Dale, Nov 13 2011 *)
KEYWORD
easy,nonn,tabl
AUTHOR
Omar E. Pol, Jul 12 2009
EXTENSIONS
Terms beyond the 6th row from R. J. Mathar and Max Alekseyev, Feb 05 2010
STATUS
approved