OFFSET
1,2
COMMENTS
Let A=Axxxxxx be any sequence. Denote by A^* the intersection of A and the union of sequences {4*A(n)+k}, k=-1,0,1,2. Then the present sequence is the union of A079523^* and A121539^*.
Conjecture. In every sequence of numbers n such that A010060(n)=A010060(n+k) for fixed odd k, the odious (A000069) and evil (A001969) terms alternate. [Vladimir Shevelev, Jul 31 2009]
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000
J.-P. Allouche, Thue, Combinatorics on words, and conjectures inspired by the Thue-Morse sequence, arXiv:1401.3727 [math>NT], 2014.
J.-P. Allouche, Thue, Combinatorics on words, and conjectures inspired by the Thue-Morse sequence, J. de Théorie des Nombres de Bordeaux, 27, no. 2 (2015), 375-388.
V. Shevelev, Equations of the form t(x+a)=t(x) and t(x+a)=1-t(x) for Thue-Morse sequence, arXiv:0907.0880 [math.NT], 2009-2012.
MATHEMATICA
tm[0] = 0; tm[n_?EvenQ] := tm[n] = tm[n/2]; tm[n_] := tm[n] = 1 - tm[(n - 1)/2]; Reap[For[n = 0, n <= 20000, n++, If[tm[n] == tm[n + 5], Sow[n]]]][[2, 1]] (* G. C. Greubel, Jan 05 2018 *)
PROG
(PARI) is(n)=hammingweight(n+5)==Mod(hammingweight(n), 2) \\ Charles R Greathouse IV, Mar 26 2013
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Vladimir Shevelev, Jun 20 2009
STATUS
approved