%I #20 Apr 16 2018 02:52:38
%S 0,2,5,8,10,11,12,14,15,16,18,21,24,26,29,32,34,37,40,42,43,44,46,47,
%T 48,50,53,56,58,59,60,62,63,64,66,69,72,74,75,76,78,79,80,82,85,88,90,
%U 93,96,98,101,104,106,107,108,110,111,112,114,117,120,122,125,128,130,133,136,138,139,140,142,143,144
%N Positions n such that A010060(n) = A010060(n+5).
%C Let A=Axxxxxx be any sequence. Denote by A^* the intersection of A and the union of sequences {4*A(n)+k}, k=-1,0,1,2. Then the present sequence is the union of A079523^* and A121539^*.
%C Conjecture. In every sequence of numbers n such that A010060(n)=A010060(n+k) for fixed odd k, the odious (A000069) and evil (A001969) terms alternate. [_Vladimir Shevelev_, Jul 31 2009]
%H G. C. Greubel, <a href="/A161817/b161817.txt">Table of n, a(n) for n = 1..10000</a>
%H J.-P. Allouche, <a href="http://arxiv.org/abs/1401.3727">Thue, Combinatorics on words, and conjectures inspired by the Thue-Morse sequence</a>, arXiv:1401.3727 [math>NT], 2014.
%H J.-P. Allouche, <a href="http://dx.doi.org/10.5802/jtnb.906">Thue, Combinatorics on words, and conjectures inspired by the Thue-Morse sequence</a>, J. de Théorie des Nombres de Bordeaux, 27, no. 2 (2015), 375-388.
%H V. Shevelev, <a href="http://arXiv.org/abs/0907.0880">Equations of the form t(x+a)=t(x) and t(x+a)=1-t(x) for Thue-Morse sequence</a>, arXiv:0907.0880 [math.NT], 2009-2012.
%t tm[0] = 0; tm[n_?EvenQ] := tm[n] = tm[n/2]; tm[n_] := tm[n] = 1 - tm[(n - 1)/2]; Reap[For[n = 0, n <= 20000, n++, If[tm[n] == tm[n + 5], Sow[n]]]][[2, 1]] (* _G. C. Greubel_, Jan 05 2018 *)
%o (PARI) is(n)=hammingweight(n+5)==Mod(hammingweight(n),2) \\ _Charles R Greathouse IV_, Mar 26 2013
%Y Cf. A161674, A161673, A161639, A161641, A161627, A161579, A161580, A121539, A131323, A036554, A010060, A079523, A081706.
%K nonn,base,easy
%O 1,2
%A _Vladimir Shevelev_, Jun 20 2009