login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161585
The list of the k values in the common solutions to the 2 equations 7*k+1=A^2, 11*k+1=B^2.
1
0, 9, 720, 56880, 4492809, 354875040, 28030635360, 2214065318409, 174883129518960, 13813553166679440, 1091095817038156809, 86182755992847708480, 6807346627617930813120, 537694200825823686528009, 42471034518612453304899600, 3354674032769557987400540400
OFFSET
1,2
COMMENTS
The 2 equations are equivalent to the Pell equation x^2-77*y^2=1,
with x=(77*k+9)/2 and y= A*B/2, case C=7 in A160682.
FORMULA
k(t+3)=80*(k(t+2)-k(t+1))+k(t).
k(t)=((9+w)*((79+9*w)/2)^(t-1)+(9-w)*((79-9*w)/2)^(t-1))/154 where w=sqrt(77).
k(t) = floor of ((9+w)*((79+9*w)/2)^(t-1))/154.
G.f.: -9*x^2/((x-1)*(x^2-79*x+1)).
MAPLE
t:=0: for n from 0 to 1000000 do a:=sqrt(7*n+1): b:=sqrt(11*n+1):
if (trunc(a)=a) and (trunc(b)=b) then t:=t+1: print(t, n, a, b): end if: end do:
MATHEMATICA
LinearRecurrence[{80, -80, 1}, {0, 9, 720}, 20] (* Harvey P. Dale, Jun 07 2023 *)
CROSSREFS
Cf. A160682, A070998 (sequence of A), A057081 (sequence of B)
Sequence in context: A282181 A053515 A120816 * A255259 A191367 A189821
KEYWORD
nonn,easy
AUTHOR
Paul Weisenhorn, Jun 14 2009
EXTENSIONS
Edited, extended by R. J. Mathar, Sep 02 2009
STATUS
approved