OFFSET
1,2
COMMENTS
The 2 equations are equivalent to the Pell equation x^2-221*y^2=1,
with x=(221*k+15)/2 and y= A*B/2, case C=13 of A160682.
LINKS
Index entries for linear recurrences with constant coefficients, signature (224, -224, 1).
FORMULA
k(t+3)=224*(k(t+2)-k(t+1))+k(t).
k(t)=((15+w)*((223+15*w)/2)^(t-1)+(15-w)*((223-15*w)/2)^(t-1))/442 where w=sqrt(221).
k(t) = floor of ((15+w)*((223+15*w)/2)^(t-1))/442;
G.f.: -15*x^2/((x-1)*(x^2-223*x+1)).
a(1)=0, a(2)=15, a(3)=3360, a(n)=224*a(n-1)-224*a(n-2)+a(n-3). - Harvey P. Dale, Nov 22 2013
MAPLE
t:=0: for n from 0 to 1000000 do a:=sqrt(13*n+1): b:=sqrt(17*n+1):
if (trunc(a)=a) and (trunc(b)=b) then t:=t+1: print(t, n, a, b): end if: end do:
MATHEMATICA
LinearRecurrence[{224, -224, 1}, {0, 15, 3360}, 20] (* Harvey P. Dale, Nov 22 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul Weisenhorn, Jun 14 2009
EXTENSIONS
Edited, extended by R. J. Mathar, Sep 02 2009
STATUS
approved