login
A161584
The list of the k values in the common solutions to the 2 equations 13*k+1=A^2, 17*k+1=B^2.
2
0, 15, 3360, 749280, 167086095, 37259449920, 8308690246080, 1852800665425935, 413166239699737440, 92134218652376023200, 20545517593240153436175, 4581558289073901840243840, 1021666952945886870220940160
OFFSET
1,2
COMMENTS
The 2 equations are equivalent to the Pell equation x^2-221*y^2=1,
with x=(221*k+15)/2 and y= A*B/2, case C=13 of A160682.
FORMULA
k(t+3)=224*(k(t+2)-k(t+1))+k(t).
k(t)=((15+w)*((223+15*w)/2)^(t-1)+(15-w)*((223-15*w)/2)^(t-1))/442 where w=sqrt(221).
k(t) = floor of ((15+w)*((223+15*w)/2)^(t-1))/442;
G.f.: -15*x^2/((x-1)*(x^2-223*x+1)).
a(1)=0, a(2)=15, a(3)=3360, a(n)=224*a(n-1)-224*a(n-2)+a(n-3). - Harvey P. Dale, Nov 22 2013
MAPLE
t:=0: for n from 0 to 1000000 do a:=sqrt(13*n+1): b:=sqrt(17*n+1):
if (trunc(a)=a) and (trunc(b)=b) then t:=t+1: print(t, n, a, b): end if: end do:
MATHEMATICA
LinearRecurrence[{224, -224, 1}, {0, 15, 3360}, 20] (* Harvey P. Dale, Nov 22 2013 *)
CROSSREFS
Cf. A160682 (sequence of A), A161591 (sequence of B)
Sequence in context: A208584 A211903 A278630 * A013720 A230672 A145189
KEYWORD
nonn
AUTHOR
Paul Weisenhorn, Jun 14 2009
EXTENSIONS
Edited, extended by R. J. Mathar, Sep 02 2009
STATUS
approved