OFFSET
1,2
COMMENTS
The 2 equations are equivalent to the Pell equation x^2 - 221*y^2 = 1, with x = (221*k+15)/2 and y = A*B/2, case C=13 in A160682.
LINKS
Andersen, K., Carbone, L. and Penta, D., Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9.
Index entries for linear recurrences with constant coefficients, signature (15,-1).
FORMULA
MAPLE
t:=0: for b from 1 to 1000000 do a:=sqrt((13*b^2+4)/17):
if (trunc(a)=a) then t:=t+1: n:=(b^2-1)/17: print(t, a, b, n): end if: end do:
MATHEMATICA
LinearRecurrence[{15, -1}, {1, 16}, 30] (* Harvey P. Dale, Dec 04 2015 *)
PROG
(Sage) [(lucas_number2(n, 15, 1)-lucas_number2(n-1, 15, 1))/13 for n in range(1, 20)] # Zerinvary Lajos, Nov 10 2009
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul Weisenhorn, Jun 14 2009
EXTENSIONS
Edited, extended by R. J. Mathar, Sep 02 2009
STATUS
approved