The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A145189 Continued cotangent recurrence a(n+1)=a(n)^3+3*a(n) and a(1)=15 11
 15, 3420, 40001698260, 64008151994095341241755497070780, 262244184463346778261182615794616508638576477409715732397097802610370956164308073990185129764340 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS General formula for continued cotangent recurrences type: a(n+1)=a(n)3+3*a(n) and a(1)=k is following: a(n)=Floor[((k+Sqrt[k^2+4])/2)^(3^(n-1))] k=1 see A006267 k=2 see A006266 k=3 see A006268 k=4 see A006267(n+1) k=5 see A006269 k=6 see A145180 k=7 see A145181 k=8 see A145182 k=9 see A145183 k=10 see A145184 k=11 see A145185 k=12 see A145186 k=13 see A145187 k=14 see A145188 k=15 see A145189 LINKS FORMULA a(n+1)=a(n)3+3*a(n) and a(1)=14 a(n)=Floor[((14+Sqrt[14^2+4])/2)^(3^(n-1))] MATHEMATICA a = {}; k = 15; Do[AppendTo[a, k]; k = k^3 + 3 k, {n, 1, 6}]; a or Table[Floor[((15 + Sqrt[229])/2)^(3^(n - 1))], {n, 1, 5}] (*Artur Jasinski*) NestList[#^3+3#&, 15, 5] (* Harvey P. Dale, Aug 20 2017 *) CROSSREFS A006267, A006266, A006268, A006269, A145180, A145181, A145182, A145183, A145184, A145185, A145186, A145187, A145188, A145189 Sequence in context: A161584 A013720 A230672 * A182283 A194479 A262019 Adjacent sequences:  A145186 A145187 A145188 * A145190 A145191 A145192 KEYWORD nonn AUTHOR Artur Jasinski, Oct 03 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 10:31 EST 2021. Contains 349416 sequences. (Running on oeis4.)