|
|
A161582
|
|
The list of the k values in the common solutions to the 2 equations 5*k+1=A^2, 9*k+1=B^2.
|
|
2
|
|
|
0, 7, 336, 15792, 741895, 34853280, 1637362272, 76921173511, 3613657792752, 169764995085840, 7975341111241735, 374671267233275712, 17601574218852716736, 826899317018844410887, 38846666325666834594960, 1824966417989322381552240
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
The 2 equations are equivalent to the Pell equation x^2-45*y^2=1, with x=(45*k+7)/2 and y= A*B/2, case C=5 in A160682.
|
|
LINKS
|
|
|
FORMULA
|
k(t+3) = 48*(k(t+2)-k(t+1))+k(t).
With w = sqrt(5),
k(t) = ((7+3*w)*((47+21*w)/2)^(t-1)+(7-3*w)*((47-21*w)/2)^(t-1))/90.
k(t) = floor(((7+3*w)*((47+21*w)/2)^(t-1)/90) = 7*|A156093(t-1)|.
G.f.: -7*x^2/((x-1)*(x^2-47*x+1)).
a(1)=0, a(2)=7, a(3)=336, a(n) = 48*a(n-1)-48*a(n-2)+a(n-3). - Harvey P. Dale, Mar 21 2013
|
|
MAPLE
|
t:=0: for n from 0 to 1000000 do a:=sqrt(5*n+1); b:=sqrt(9*n+1);
if (trunc(a)=a) and (trunc(b)=b) then t:=t+1; print(t, n, a, b): end if: end do:
|
|
MATHEMATICA
|
LinearRecurrence[{48, -48, 1}, {0, 7, 336}, 30] (* or *) Rest[CoefficientList[ Series[ -7x^2/((x-1)(x^2-47x+1)), {x, 0, 30}], x]] (* Harvey P. Dale, Mar 21 2013 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|