login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161583
The list of the k values in the common solutions to the 2 equations 15*k+1=A^2, 19*k+1=B^2.
3
0, 17, 4896, 1405152, 403273745, 115738159680, 33216448554432, 9533004996962321, 2735939217679631712, 785205022469057339040, 225351105509401776672785, 64674982076175840847750272, 18561494504756956921527655296, 5327084247883170460637589319697
OFFSET
1,2
COMMENTS
The 2 equations are equivalent to the Pell equation x^2-285*y^2=1,
with x=(285*k+17)/2 and y=A*B/2, case C=15 in A160682.
FORMULA
k(t+3)=288*(k(t+2)-k(t+1))+k(t).
k(t)=((17+w)*((287+17*w)/2)^(t-1)+(17-w)*((287-17*w)/2)^(t-1))/570 where w=sqrt(285).
k(t) = floor of ((17+w)*((287+17*w)/2)^(t-1))/570;
G.f.: -17*x^2/((x-1)*(x^2-287*x+1)).
MAPLE
t:=0: for n from 0 to 1000000 do a:=sqrt(15*n+1): b:=sqrt(19*n+1):
if (trunc(a)=a) and (trunc(b)=b) then t:=t+1: print(t, n, a, b): end if: end do:
CROSSREFS
Cf. A160682, A161595 (sequence of A), A161599 (sequence of B)
Sequence in context: A015058 A015034 A350980 * A013722 A357419 A238610
KEYWORD
nonn
AUTHOR
Paul Weisenhorn, Jun 14 2009
EXTENSIONS
Edited, extended by R. J. Mathar, Sep 02 2009
STATUS
approved