login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161599
The list of the B values in the common solutions to the 2 equations 15*k + 1 = A^2, 19*k + 1 = B^2.
3
1, 18, 305, 5167, 87534, 1482911, 25121953, 425590290, 7209912977, 122142930319, 2069219902446, 35054595411263, 593858902089025, 10060546740102162, 170435435679647729, 2887341859813909231, 48914376181156809198, 828657053219851847135, 14038255528556324592097
OFFSET
1,2
COMMENTS
The case C=15 of finding k such that C*k+1 and (C+4)*k+2 are both perfect squares (A160682).
The 2 equations are equivalent to the Pell equation x^2 - 285*y^2 = 1, with x = (285*k+17)/2 and y = A*B/2.
LINKS
Andersen, K., Carbone, L. and Penta, D., Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9.
FORMULA
B(t+2) = 17*B(t+1) - B(t).
B(t) = ((285+19*w)*((17+w)/2)^(t-1)+(285-19*w)*((17-w)/2)^(t-1))/570 where w=sqrt(285).
G.f.: (1+x)*x/(1-17*x+x^2).
MAPLE
t:=0: for b from 1 to 1000000 do a:=sqrt((15*b^2+4)/19):
if (trunc(a)=a) then t:=t+1: n:=(b^2-1)/19: print(t, a, b, n): end if: end do:
MATHEMATICA
LinearRecurrence[{17, -1}, {1, 18}, 30] (* Harvey P. Dale, Jan 30 2024 *)
PROG
(Sage) [(lucas_number2(n, 17, 1)-lucas_number2(n-1, 17, 1))/15 for n in range(1, 20)] # Zerinvary Lajos, Nov 10 2009
CROSSREFS
Cf. A160682, A161595 (sequence of A), A161583 (sequence of k).
Sequence in context: A228606 A228605 A193317 * A273434 A083451 A162804
KEYWORD
nonn
AUTHOR
Paul Weisenhorn, Jun 14 2009
EXTENSIONS
Edited, extended by R. J. Mathar, Sep 02 2009
STATUS
approved