login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160065
Numerator of Hermite(n, 21/25).
1
1, 42, 514, -83412, -5430804, 188966232, 41879106744, 341675743248, -352091802793584, -18204613149810528, 3196439029135777824, 361808103596334268608, -28755096299570905798464, -6634835598526992072655488, 188607219729893552173509504, 124031126202877890462758439168
OFFSET
0,2
LINKS
FORMULA
From G. C. Greubel, Sep 23 2018: (Start)
a(n) = 25^n * Hermite(n, 21/25).
E.g.f.: exp(42*x - 625*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(42/25)^(n-2*k)/(k!*(n-2*k)!)). (End)
EXAMPLE
Numerators of 1, 42/25, 514/625, -83412/15625, -5430804/390625, ...
MATHEMATICA
Table[25^n*HermiteH[n, 21/25], {n, 0, 30}] (* G. C. Greubel, Sep 23 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 21/25)) \\ Charles R Greathouse IV, Jan 29 2016
(PARI) x='x+O('x^30); Vec(serlaplace(exp(42*x - 625*x^2))) \\ G. C. Greubel, Sep 23 2018
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(42/25)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 23 2018
CROSSREFS
Cf. A009969 (denominators).
Sequence in context: A263289 A273223 A163727 * A196671 A248448 A248449
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved