login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248449
Number of length 1+5 0..n arrays with no three disjoint pairs in any consecutive six terms having the same sum.
1
42, 546, 3372, 13500, 41670, 107502, 243576, 499992, 949890, 1695450, 2874852, 4669716, 7313502, 11100390, 16395120, 23643312, 33382746, 46255122, 63018780, 84561900, 111916662, 146273886, 188998632, 241646280, 305979570, 383986122
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 6*a(n-1) - 14*a(n-2) + 14*a(n-3) - 14*a(n-5) + 14*a(n-6) - 6*a(n-7) + a(n-8).
Empirical for n mod 2 = 0: a(n) = n^6 + 6*n^5 + (15/2)*n^4 + 20*n^3 + 5*n^2 - 5*n.
Empirical for n mod 2 = 1: a(n) = n^6 + 6*n^5 + (15/2)*n^4 + 20*n^3 + 5*n^2 - 5*n + (15/2).
Empirical g.f.: 6*x*(7 + 49*x + 114*x^2 + 54*x^3 + 39*x^4 - 23*x^5) / ((1 - x)^7*(1 + x)). - Colin Barker, Nov 08 2018
EXAMPLE
Some solutions for n=6:
..2....3....1....3....4....3....1....1....4....0....2....1....0....0....1....0
..5....1....3....4....2....3....5....1....0....2....2....2....6....0....0....3
..4....0....5....2....2....1....3....3....3....3....0....5....5....1....5....3
..4....2....3....3....3....5....2....2....2....2....4....5....3....3....4....0
..0....2....2....4....2....2....6....0....4....3....3....4....2....1....3....3
..4....0....2....3....2....3....5....5....3....1....6....0....6....6....1....2
CROSSREFS
Row 1 of A248448.
Sequence in context: A160065 A196671 A248448 * A245874 A293096 A279888
KEYWORD
nonn
AUTHOR
R. H. Hardin, Oct 06 2014
STATUS
approved