login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A248450 Number of length 2+5 0..n arrays with no three disjoint pairs in any consecutive six terms having the same sum 1
62, 1272, 11436, 59480, 226410, 694632, 1824272, 4257336, 9061830, 17909120, 33303852, 58859112, 99630266, 162505920, 256670520, 394127072, 590308422, 864758736, 1241905340, 1751918880, 2431676802, 3325811912, 4487885496 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Row 2 of A248448
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3) -2*a(n-4) +2*a(n-5) +5*a(n-6) -8*a(n-7) +6*a(n-8) -8*a(n-9) +5*a(n-10) +2*a(n-11) -2*a(n-12) +2*a(n-13) -5*a(n-14) +4*a(n-15) -a(n-16)
Empirical for n mod 12 = 0: a(n) = n^7 + 7*n^6 + 6*n^5 + (55/2)*n^4 + (415/9)*n^3 - (383/3)*n^2 + 74*n
Empirical for n mod 12 = 1: a(n) = n^7 + 7*n^6 + 6*n^5 + (55/2)*n^4 + (415/9)*n^3 - (383/3)*n^2 + 89*n + (235/18)
Empirical for n mod 12 = 2: a(n) = n^7 + 7*n^6 + 6*n^5 + (55/2)*n^4 + (415/9)*n^3 - (383/3)*n^2 + (142/3)*n + (1000/9)
Empirical for n mod 12 = 3: a(n) = n^7 + 7*n^6 + 6*n^5 + (55/2)*n^4 + (415/9)*n^3 - (383/3)*n^2 + 89*n + (195/2)
Empirical for n mod 12 = 4: a(n) = n^7 + 7*n^6 + 6*n^5 + (55/2)*n^4 + (415/9)*n^3 - (383/3)*n^2 + 74*n + (320/9)
Empirical for n mod 12 = 5: a(n) = n^7 + 7*n^6 + 6*n^5 + (55/2)*n^4 + (415/9)*n^3 - (383/3)*n^2 + (187/3)*n + (1595/18)
Empirical for n mod 12 = 6: a(n) = n^7 + 7*n^6 + 6*n^5 + (55/2)*n^4 + (415/9)*n^3 - (383/3)*n^2 + 74*n
Empirical for n mod 12 = 7: a(n) = n^7 + 7*n^6 + 6*n^5 + (55/2)*n^4 + (415/9)*n^3 - (383/3)*n^2 + 89*n + (2395/18)
Empirical for n mod 12 = 8: a(n) = n^7 + 7*n^6 + 6*n^5 + (55/2)*n^4 + (415/9)*n^3 - (383/3)*n^2 + (142/3)*n + (1000/9)
Empirical for n mod 12 = 9: a(n) = n^7 + 7*n^6 + 6*n^5 + (55/2)*n^4 + (415/9)*n^3 - (383/3)*n^2 + 89*n - (45/2)
Empirical for n mod 12 = 10: a(n) = n^7 + 7*n^6 + 6*n^5 + (55/2)*n^4 + (415/9)*n^3 - (383/3)*n^2 + 74*n + (320/9)
Empirical for n mod 12 = 11: a(n) = n^7 + 7*n^6 + 6*n^5 + (55/2)*n^4 + (415/9)*n^3 - (383/3)*n^2 + (187/3)*n + (3755/18)
EXAMPLE
Some solutions for n=4
..3....0....3....1....3....0....1....2....2....1....4....3....3....1....3....2
..0....1....0....4....4....1....0....1....1....2....2....1....0....2....4....4
..2....4....1....4....0....1....2....1....0....1....2....0....1....0....0....0
..2....0....3....3....3....3....3....3....3....0....3....3....0....3....4....3
..3....2....4....3....4....3....1....0....0....3....0....0....2....1....1....4
..1....1....2....0....3....3....4....0....1....3....3....0....0....0....3....0
..0....4....3....3....4....4....3....3....0....3....1....0....0....1....3....2
CROSSREFS
Sequence in context: A250564 A231027 A103428 * A115504 A296359 A037962
KEYWORD
nonn
AUTHOR
R. H. Hardin, Oct 06 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 20:20 EST 2023. Contains 367526 sequences. (Running on oeis4.)