login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160066
Numerator of Hermite(n, 22/25).
1
1, 44, 686, -79816, -6084404, 131366224, 43807638856, 942289429664, -341856105084784, -24464562920370496, 2769440413707518176, 427662414707761999744, -19262659441336846931264, -7262493236035251261135616, -6531486463827292856927104, 126806246226208496184168487424
OFFSET
0,2
LINKS
FORMULA
From G. C. Greubel, Sep 23 2018: (Start)
a(n) = 25^n * Hermite(n, 22/25).
E.g.f.: exp(44*x - 625*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(44/25)^(n-2*k)/(k!*(n-2*k)!)). (End)
EXAMPLE
Numerators of 1, 44/25, 686/625, -79816/15625, -6084404/390625, ...
MATHEMATICA
Table[25^n*HermiteH[n, 22/25], {n, 0, 30}] (* G. C. Greubel, Sep 23 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 22/25)) \\ Charles R Greathouse IV, Jan 29 2016
(PARI) x='x+O('x^30); Vec(serlaplace(exp(44*x - 625*x^2))) \\ G. C. Greubel, Sep 23 2018
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(44/25)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 23 2018
CROSSREFS
Cf. A009969 (denominators).
Sequence in context: A252869 A296649 A221505 * A358794 A120812 A282860
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved