login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159247 Numerator of Hermite(n, 1/10). 4
1, 1, -49, -149, 7201, 37001, -1763249, -12863549, 604273601, 5749693201, -266173427249, -3141020027749, 143254364959201, 2027866381608601, -91087470841872049, -1510593937967892749, 66805009193436144001, 1275280159567750343201 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..450 (terms 0..100 from T. D. Noe)

FORMULA

From G. C. Greubel, Jun 10 2018: (Start)

a(n) = 5^n * Hermite(n,1/10).

E.g.f.: exp(x-25*x^2).

a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(1/5)^(n-2*k)/(k!*(n-2*k)!)). (End)

MATHEMATICA

Numerator[Table[HermiteH[n, 1/10], {n, 0, 50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 02 2011*)

PROG

(PARI) a(n)=numerator(polhermite(n, 1/10)) \\ Charles R Greathouse IV, Jan 29 2016

(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(1/5)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 10 2018

CROSSREFS

Cf. A158811, A158954, A158960.

Sequence in context: A027469 A044381 A044762 * A265423 A226146 A339730

Adjacent sequences: A159244 A159245 A159246 * A159248 A159249 A159250

KEYWORD

sign,frac

AUTHOR

N. J. A. Sloane, Nov 12 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 23:46 EST 2022. Contains 358544 sequences. (Running on oeis4.)