login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159247
Numerator of Hermite(n, 1/10).
4
1, 1, -49, -149, 7201, 37001, -1763249, -12863549, 604273601, 5749693201, -266173427249, -3141020027749, 143254364959201, 2027866381608601, -91087470841872049, -1510593937967892749, 66805009193436144001, 1275280159567750343201, -55508977654852972057649
OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..450 (terms 0..100 from T. D. Noe)
FORMULA
From G. C. Greubel, Jun 10 2018: (Start)
a(n) = 5^n * Hermite(n,1/10).
E.g.f.: exp(x-25*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(1/5)^(n-2*k)/(k!*(n-2*k)!)). (End)
a(n) = 50*(1-n)*a(n-2)+a(n-1) for n>1. - Christian Krause, Oct 21 2024
MATHEMATICA
Numerator[Table[HermiteH[n, 1/10], {n, 0, 50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 02 2011*)
PROG
(PARI) a(n)=numerator(polhermite(n, 1/10)) \\ Charles R Greathouse IV, Jan 29 2016
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(1/5)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 10 2018
CROSSREFS
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved