login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerator of Hermite(n, 1/10).
4

%I #22 Oct 21 2024 15:17:20

%S 1,1,-49,-149,7201,37001,-1763249,-12863549,604273601,5749693201,

%T -266173427249,-3141020027749,143254364959201,2027866381608601,

%U -91087470841872049,-1510593937967892749,66805009193436144001,1275280159567750343201,-55508977654852972057649

%N Numerator of Hermite(n, 1/10).

%H G. C. Greubel, <a href="/A159247/b159247.txt">Table of n, a(n) for n = 0..450</a> (terms 0..100 from T. D. Noe)

%F From _G. C. Greubel_, Jun 10 2018: (Start)

%F a(n) = 5^n * Hermite(n,1/10).

%F E.g.f.: exp(x-25*x^2).

%F a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(1/5)^(n-2*k)/(k!*(n-2*k)!)). (End)

%F a(n) = 50*(1-n)*a(n-2)+a(n-1) for n>1. - _Christian Krause_, Oct 21 2024

%t Numerator[Table[HermiteH[n,1/10],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 02 2011*)

%o (PARI) a(n)=numerator(polhermite(n,1/10)) \\ _Charles R Greathouse IV_, Jan 29 2016

%o (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(1/5)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 10 2018

%Y Cf. A158811, A158954, A158960.

%K sign,frac

%O 0,3

%A _N. J. A. Sloane_, Nov 12 2009