login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265423
(-1)^n + 50*floor(3n/2) - 100*floor(n/4).
2
1, 49, 151, 199, 201, 249, 351, 399, 401, 449, 551, 599, 601, 649, 751, 799, 801, 849, 951, 999, 1001, 1049, 1151, 1199, 1201, 1249, 1351, 1399, 1401, 1449, 1551, 1599, 1601, 1649, 1751, 1799, 1801, 1849, 1951, 1999, 2001, 2049, 2151, 2199, 2201, 2249, 2351, 2399, 2401, 2449, 2551, 2599, 2601, 2649, 2751, 2799, 2801
OFFSET
0,2
COMMENTS
Also: solutions to b^2 = 1 mod 400. Occurs in the context of a problem concerning integer-valued percentages, see link.
LINKS
R. Israel, in reply to E. Angelini, Percentages, SeqFan list, Dec 7, 2015.
FORMULA
a(n)=2*A265424(n)+1.
G.f.: (1+48*x+102*x^2+48*x^3+x^4)/(1-x-x^4+x^5). - Robert Israel, Dec 08 2015
MAPLE
seq((-1)^n + 50*floor(3*n/2) - 100*floor(n/4), n=0..100); # Robert Israel, Dec 08 2015
PROG
(PARI) A265423(n)=(-1)^n+n*3\2*50-n\4*100
(PARI) is_A265423(n)=Mod(n, 400)^2==1
CROSSREFS
Sequence in context: A044381 A044762 A159247 * A226146 A339730 A338011
KEYWORD
nonn,easy,changed
AUTHOR
M. F. Hasler, Dec 08 2015
STATUS
approved