login
A265426
Primes p such that p - 1 is a binary Keith number (A162724).
0
2, 3, 5, 17, 257, 1367, 65537, 2960687
OFFSET
1,1
COMMENTS
See A162724 (binary Keith numbers) and A007629 (Keith numbers) for definitions.
Primes of the form A162724(n)+1.
Fermat primes (A019434) are terms.
The next term, if it exists, must be greater than 17*10^9.
Union of primes p of the form A162363(n)+1 and A000079(m)+1 for a some n or m.
MATHEMATICA
fQ[n_] := Module[{b = IntegerDigits[n, 2], s}, s = Total@ b; If[s <= 1, True, k = 1; While[s = 2 s - b[[k]]; s < n, k++]; s == n]]; Select[Prime@ Range[10^6], fQ[# - 1] &] (* Michael De Vlieger, Dec 09 2015, after T. D. Noe at A162724 *)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Jaroslav Krizek, Dec 08 2015
STATUS
approved