login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027469
a(n) = 49*(n-1)*(n-2)/2.
2
49, 147, 294, 490, 735, 1029, 1372, 1764, 2205, 2695, 3234, 3822, 4459, 5145, 5880, 6664, 7497, 8379, 9310, 10290, 11319, 12397, 13524, 14700, 15925, 17199, 18522, 19894, 21315, 22785, 24304, 25872, 27489, 29155, 30870, 32634, 34447, 36309, 38220, 40180
OFFSET
3,1
FORMULA
Numerators of sequence a[ n, n-2 ] in (a[ i, j ])^3 where a[ i, j ] = binomial(i-1, j-1)/2^(i-1) if j <= i, 0 if j > i.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(3)=49, a(4)=147, a(5)=294. - Harvey P. Dale, Aug 24 2011
G.f.: 49*x^3/(1-x)^3. - Harvey P. Dale, Aug 24 2011
From Amiram Eldar, Sep 04 2022: (Start)
a(n) = A162942(n-2).
Sum_{n>=3} 1/a(n) = 2/49.
Sum_{n>=3} (-1)^(n+1)/a(n) = 2*(2*log(2)-1)/49. (End)
MATHEMATICA
Table[49(n-1)(n-2)/2, {n, 3, 70}] (* or *) LinearRecurrence[{3, -3, 1}, {49, 147, 294}, 70] (* Harvey P. Dale, Aug 24 2011 *)
PROG
(Magma) [49*(n-1)*(n-2)/2: n in [3..50]]; // Vincenzo Librandi, Aug 25 2011
(PARI) a(n)=49*(n-1)*(n-2)/2 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Third diagonal of A027466.
Cf. A162942.
Sequence in context: A088535 A045897 A162942 * A044381 A044762 A159247
KEYWORD
nonn,easy
EXTENSIONS
More terms from Harvey P. Dale, Aug 24 2011
STATUS
approved