The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A027469 a(n) = 49*(n-1)*(n-2)/2. 2
 49, 147, 294, 490, 735, 1029, 1372, 1764, 2205, 2695, 3234, 3822, 4459, 5145, 5880, 6664, 7497, 8379, 9310, 10290, 11319, 12397, 13524, 14700, 15925, 17199, 18522, 19894, 21315, 22785, 24304, 25872, 27489, 29155, 30870, 32634, 34447, 36309, 38220, 40180 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,1 LINKS Vincenzo Librandi, Table of n, a(n) for n = 3..10000 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA Numerators of sequence a[ n, n-2 ] in (a[ i, j ])^3 where a[ i, j ] = binomial(i-1, j-1)/2^(i-1) if j <= i, 0 if j > i. a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(3)=49, a(4)=147, a(5)=294. - Harvey P. Dale, Aug 24 2011 G.f.: 49*x^3/(1-x)^3. - Harvey P. Dale, Aug 24 2011 From Amiram Eldar, Sep 04 2022: (Start) a(n) = A162942(n-2). Sum_{n>=3} 1/a(n) = 2/49. Sum_{n>=3} (-1)^(n+1)/a(n) = 2*(2*log(2)-1)/49. (End) MATHEMATICA Table[49(n-1)(n-2)/2, {n, 3, 70}] (* or *) LinearRecurrence[{3, -3, 1}, {49, 147, 294}, 70] (* Harvey P. Dale, Aug 24 2011 *) PROG (Magma) [49*(n-1)*(n-2)/2: n in [3..50]]; // Vincenzo Librandi, Aug 25 2011 (PARI) a(n)=49*(n-1)*(n-2)/2 \\ Charles R Greathouse IV, Jun 17 2017 CROSSREFS Third diagonal of A027466. Cf. A162942. Sequence in context: A088535 A045897 A162942 * A044381 A044762 A159247 Adjacent sequences: A027466 A027467 A027468 * A027470 A027471 A027472 KEYWORD nonn,easy AUTHOR Olivier Gérard EXTENSIONS More terms from Harvey P. Dale, Aug 24 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 01:10 EDT 2023. Contains 363029 sequences. (Running on oeis4.)