login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162942
a(n) = binomial(n + 1, 2)*7^2.
1
0, 49, 147, 294, 490, 735, 1029, 1372, 1764, 2205, 2695, 3234, 3822, 4459, 5145, 5880, 6664, 7497, 8379, 9310, 10290, 11319, 12397, 13524, 14700, 15925, 17199, 18522, 19894, 21315, 22785, 24304, 25872, 27489, 29155, 30870, 32634, 34447, 36309
OFFSET
0,2
COMMENTS
Number of n permutations (n>=2) of 8 objects r, s, t, u, v, z, x, y with repetition allowed, containing n-2 u's.
FORMULA
a(n) = A027469(n+2). - R. J. Mathar, Jul 18 2009
G.f.: -49*x / (x-1)^3. - R. J. Mathar, May 02 2014
From Amiram Eldar, Sep 04 2022: (Start)
Sum_{n>=1} 1/a(n) = 2/49.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(2*log(2)-1)/49. (End)
EXAMPLE
If n=2 then n-2=zero (0) u, a(1) = 49 because we have sr, tr, vr, zr, xr, yr, rs, rt, rv, rz, rx, ry, ss, st, sv, sz, sx, sy, ts, tt, tv, tz, tx, ty, vs, vt, vv, vz, vx, vy, zs, zt, zv, zz, zx, zy, xs, xt, xv, xz, xx, xy, ys, yt, yv, yz, yx, yy. If n=3 then n-2 = one (1) u, a(2) = 147 >> ssu, stu, etc.. Tf n=4 then n-2 = two (2) u, a(2) = 294 >> ssuu, stuu, ..., txuu, etc.. If n=5 then n-2 = three (3) u, a(3) = 490 >> rsuuu, stuuu, ..., rxuuu, etc..
MATHEMATICA
Table[Binomial[n + 1, 2]*7^2, {n, 0, 58}]
PROG
(PARI) a(n)=49*binomial(n+1, 2) \\ Charles R Greathouse IV, May 02 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Zerinvary Lajos, Jul 18 2009
STATUS
approved