login
A162941
Number of reduced words of length n in Coxeter group on 7 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
0
1, 7, 42, 252, 1491, 8820, 52185, 308700, 1826160, 10802925, 63906150, 378045675, 2236381350, 13229622000, 78261652875, 462967596000, 2738748634125, 16201445085000, 95841881782500, 566965863568125, 3353964722666250
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003949, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
FORMULA
G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(15*t^4 - 5*t^3 - 5*t^2 - 5*t + 1)
MATHEMATICA
coxG[{4, 15, -5}] (* The coxG program is at A169452 *) (* or *) LinearRecurrence[ {5, 5, 5, -15}, {1, 7, 42, 252, 1491}, 30] (* Harvey P. Dale, Mar 13 2018 *)
CROSSREFS
Sequence in context: A102594 A053142 A214941 * A094168 A163345 A163923
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved